Skip to main content
Log in

Root system variability in common legumes in Central Europe

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of this study was to provide an overview of field measured root systems of common legume species growing under different environmental conditions in the Czech Republic. The plants, 214 individuals of 21 selected legume species from the tribes Galegeae (Astragalus glycyphyllos, Lupinus polyphyllus), Genisteae (Cytisus scoparius, Genista tinctoria), Loteae (Anthyllis vulneraria, Lotus corniculatus, Securigera varia), Trifolieae (Trifolium arvense, T. campestre, T. medium, T. pratense, T. repens) and Vicieae (Lathyrus pratensis, L. sylvestris, Vicia angustifolia, V. cracca, V. hirsuta), were collected using the monolith method from 27 sites.

A rhizome was present in seven species and the maximum branching order was three for 15 species and five for five species. Recovery buds were recorded on the root system of eight species and woodiness was recorded in 11 species. Root diameter ranged from 1 to 12 mm — the minimum diameter was recorded in annuals and the maximum in perennials. The colour of the root system ranged from light to dark. In six species, young roots were light and older roots were dark. Globose, cylindrical, branched, fan-like and ruff-like nodules were recorded. Only one type of nodule shape was recorded in 11 species, two in seven species and three or four in three species. Nodules measured up to 2 mm in nine species, from 2 to 4 mm in three species and more than 4 mm in nine species. Legume root systems are highly variable and the variability was due to Raunkier’s life forms rather than membership of a tribe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan G.J. & Porter J.M. 2000. Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus: evidence from nuclear ribosomal ITS sequences. Am. J. Bot. 87: 1871–1881.

    Article  PubMed  CAS  Google Scholar 

  • Allen O.N. & Allen E.K. 1981. The Leguminoseae: A Source Book of Characteristics, Uses, and Nodulation. University of Wisconsin Press, Madison, 812 pp.

    Google Scholar 

  • Antos J.A. & Halpern C.B. 1997. Root system differences among species: Implications for early successional changes in forests of Western Oregon. Am. Midl. Nat. 138: 97–108.

    Article  Google Scholar 

  • Böhm W. 1979. Methods of Studying Root Systems. Springer-Verlag, Berlin, 188 pp.

    Book  Google Scholar 

  • Braun M., Schmid H., Grundler T. & Hülsbergen K.J. 2010. Rootand-shoot growth and yield of different grass-clover mixtures. Plant Biosyst. 144: 414–419.

    Article  Google Scholar 

  • Briggs D. & Walter S.M. 1997. Plant Variation and Evolution. Cambridge University Press, Cambridge, 512 pp.

    Google Scholar 

  • Corby H.D.L. 1971. The shape of leguminous nodules and the colour of leguminous roots. Plant Soil 35: 305–314.

    Article  Google Scholar 

  • Corby H.D.L. 1988. Types of rhizobial nodules and their distribution among the Leguminosae. Kirkia 13: 53–123.

    Google Scholar 

  • Capoen W., Oldroyd G., Goormachtig S. & Holsters M. 2010. Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytol. 186: 340–345.

    Article  PubMed  Google Scholar 

  • Doyle J.J. 2001. Leguminosae, pp. 1081–1085. In: Brenner S. & Miller J.H. (eds.), Encyclopedia of Genetics. Academic, San Diego.

    Chapter  Google Scholar 

  • Eissenstat D.M., Wals C.E., Yanai R.D. & Whitbeck J.L. 2000. Building roots in a changing environment: implications for root longevity. New Phytol. 147: 33–42.

    Article  CAS  Google Scholar 

  • Fitter A., Nichols R. & Harvey M. 1988. Root system architecture in relation to life history and nutrient supply. Functi. Ecol. 2: 345–351.

    Article  Google Scholar 

  • Fitter A.H. & Peat H.J. 1994. The Ecological Flora Database. J. Ecol. 82: 415–425.

    Article  Google Scholar 

  • Forde B. & Lorenzo H. 2001. The nutritional control of root development. Plant Soil 232: 51–68.

    Article  CAS  Google Scholar 

  • Garg N. & Geetanjali. 2007. Symbiotic nitrogen fixation in legume nodules: process and signalling. A review. Agron. Sustain. Develop. 27: 59–68.

    Article  CAS  Google Scholar 

  • Galloway L.F. & Fenster C.B. 2000. Population differentiation in an annual legume: local adaptation. Evolution 54: 1173–1181.

    PubMed  CAS  Google Scholar 

  • Gross K.L., Maracu D. & Pregitzer K.S. 1992. Seedling growth and root morphology of plants with different life-histories. New Phytol. 120: 535–542.

    Article  Google Scholar 

  • Gross K., Peters A. & Pregitzer K.S. 1993. Fine root growth demographic responses to nutrient patches in four old-field species. Oecologia 95: 61–64.

    Google Scholar 

  • Haberle J. & Svoboda P. 2000. Rooting depth and the depletion of water from deep soil layers by winter wheat. Sci. Agric. Bohem. 31: 171–179.

    Google Scholar 

  • Hakl J., Šantrůček J., Krajíc L. & Svobodová M. 2007. Variability of alfalfa root morphology among Czech alfalfa varieties in the seeding year. Zbornik radova Instituta za ratarstvo i povrtarstvo 44: 39–43.

    Google Scholar 

  • Hakl J., Fuksa P., Šantrůček J. & Mášková K. 2011. The development of lucerne root morphology traits under high initial stand density within a seven-year period. Plant Soil Environ. 57: 81–87.

    Google Scholar 

  • Hejcman M., Ondráček J. & Smrž Z. 2011. Ancient waste pits with wood ash irreversibly increase crop production in Central Europe. Plant Soil, 339: 341–350.

    Article  CAS  Google Scholar 

  • Hirsch A.M. 1992. Tansley. Review. No. 40. Developmental biology of legume nodulation. New Phytol. 122: 211–237.

    Article  Google Scholar 

  • Hodge A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162: 9–24.

    Article  Google Scholar 

  • Hodge A., Stewart J., Robinson D., Griffith B.S. & Fitter A.H. 1998. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 139: 479–494.

    Article  Google Scholar 

  • Honsová D., Hejcman M., Klaudisová M., Pavlú V., Kocourková D. & Hakl J. 2007. Species composition of an alluvial meadow after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia 79: 245–258.

    Google Scholar 

  • Jackson L.E., Burger M. & Cavagnaro T.R. 2008. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59: 341–363.

    Article  PubMed  CAS  Google Scholar 

  • Janeček Š., Janečkov & Lepš, J. 2007. Effect of competition and soil quality on root topology of the perennial grass Molinia caerulea. Preslia 79: 23–32.

    Google Scholar 

  • Johnson L.D., Marquez-Ortiz J.J.D., Barnes D.K. & Lamb J.F.S. 1996. Inheritance of root traits in alfalfa. Crop Sci. 36: 1482–1487.

    Article  Google Scholar 

  • Johnson H.L. & Biondini M.E. 2001. Root morphological plasticity and nitrogen uptake of 59 plant species from the Great Plains grasslands, USA. Basic Appl. Ecol. 2: 127–143.

    Article  Google Scholar 

  • Klimešová J. & de Bello F. 2009. CLO — PLA: the database of clonal and bud bank traits of Central European flora. J. Veg. Sci. 20: 511–516.

    Article  Google Scholar 

  • Komárek P., Pavlů V. & Hejcman M. 2010. Effect of depth and width of cultivation and sowing date on establishment of red clover (Trifolium pratense L.) by rotary slot-seeding into grassland. Grass Forage Sci. 65: 154–158.

    Article  Google Scholar 

  • Koukoura Z., Kyriazopoulos A.P. & Parise Z.M. 2009. Growth characteristics and nutrient content of some herbaceous species under shade and fertilization. Span. J. Agric. Res. 7: 431–438.

    Google Scholar 

  • Kubát K., Hrouda L., Chrtek J., Kaplan Z. & Štěpánek, J. 2002. Klčěteně České republiky. Academia, Praha, 928 pp.

    Google Scholar 

  • Kutschera L. 1960. Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen, DLG-Verlag, Frankfurt am Main, 574 pp.

    Google Scholar 

  • Kutschera L. & Lichtenegger E. 1992. Wurzelatlas mitteleurop äischer Grünlandpflanzen, Bd. 2, Pteridophyta und Dicotyledoneae, Vols. 1–2, Gustav Fischer, Stuttgart, 851 pp.

    Google Scholar 

  • Lamb J.F.S., Johnson L.D., Barnes D.K. & Marquez-Ortiz J.J. 2000. A method to characterize root morphology traits in alfalfa. Can. J. Plant Sci. 80: 97–104.

    Article  Google Scholar 

  • Lucero D.W., Grieu P. & Guckert A. 1999. Effects of water deficit and plant interaction on morphological growth parameters and yield of white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) mixtures. Eur. J. Agron. 11: 167–177.

    Article  Google Scholar 

  • Mendoza R., Escudem V. & García I. 2005. Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline sodic soil. Plant Soil 275: 305–315.

    Article  CAS  Google Scholar 

  • Merrill S.D., Tanaka D.L. & Hanson J.D. 2002. Root length growth of eight crop species in Haplustoll soils. Soil Sci. Soc. Am. J. 66: 913–923.

    Article  CAS  Google Scholar 

  • Mia W., Yamauchi A. & Kono Y. 1996. Plasticity in taproot elongation growth of several food legume species. Jpn. J. Crop Sci. 65: 368–378.

    Article  Google Scholar 

  • Novák K. 2010. On the efficiency of legume supernodulating mutants. Ann. Appl. Biol. 157: 321–342.

    Article  Google Scholar 

  • Olde Venterink H. & Güsewell S. 2010. Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct. Ecol. 24: 877–886.

    Article  Google Scholar 

  • Patreze C.M. & Cordeiro L. 2005. Nodulation, arbuscular myccorrhizal colonization and growth of some legumes native from Brazil. Acta Bot. Bras. 19: 527–537.

    Article  Google Scholar 

  • Pechčková M., Hadincová V., Krahulec F. & Herben T. 2003. Horizontal and vertical distribution of root absorption zones of four common grass species in a mountain grassland. New Phytol. 161: 303–312.

    Article  Google Scholar 

  • Polhill R.M. 1981. Papilionoideae, pp. 191–208. In: Polhill R.M. & Raven P.H. (eds), Advances in Legume Systematics 1. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Raunkiaer C. 1934. The Life Forms of Plants and Statistical Geography. Oxford University Press, Oxford, 632 pp.

    Google Scholar 

  • Rejili M., Ferchichi A., Mahdhi M. & Mars M. 2007. Natural nodulation of some wild legumes in the south area of Tunisia. Agric. J. 2: 405–411.

    Google Scholar 

  • Robinson D. 1994. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127: 635–674.

    Article  CAS  Google Scholar 

  • Roumet C., Urcelay C. & Díaz S. 2006. Suites of root traits differ between annual and perennial species growing in the field. New Phytol. 170: 357–368.

    Article  PubMed  Google Scholar 

  • Roumet C., Lafont F., Sari M., Warembourg F. & Garnier E. 2008. Root traits and taxonomic affiliation of nine herbaceous species grown in glasshouse conditions. Plant Soil 312: 69–83.

    Article  CAS  Google Scholar 

  • Salako F.K., Tian G. & Kang B.T. 2002. Indices of root and canopy growth of leguminous cover crops in the savanna zone of Nigeria. Trop. Grassland 36: 33–46.

    Google Scholar 

  • Skinner R.H. & Comas L.H. 2010. Root distribution of temperate forage species subjected to water and nitrogen stress. Crop Sci. Soc. Am. 50: 2178–2185.

    Article  Google Scholar 

  • Sultan S.E. 2000. Phenotypic plasticity for plant development, function and life history. Tr. Plant Sci. 5: 537–542.

    Article  CAS  Google Scholar 

  • Svoboda P. & Haberle J. 2006. The effect of nitrogen fertilization on root distribution of winter beat. Plant Soil Environ. 52: 308–313.

    CAS  Google Scholar 

  • Šmilauerová M. & Šmilauer P. 2010. First come, first served: grasses have a head start on forbs with prompt nutrient patch occupation. Plant Soil 328: 327–336.

    Article  Google Scholar 

  • Šmilauerová M. & Šmilauer P. 2002. Morphological responses of plant roots to heterogeneity of oil resources. New Phytol. 154: 703–715.

    Article  Google Scholar 

  • ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  • Truongt H.D. & Brix H. 2009. Growth responses of the perennial legume Sesbania sesban to NH4 and NO3 nutrition and effects on root nodulation. Aquat. Bot. 91: 238–244.

    Article  Google Scholar 

  • Van der Krift T.A.J. & Berendse F. 2002. Root life spans of four grass species from habitats differing in nutrient availability. Funct. Ecol. 16: 198–203.

    Article  Google Scholar 

  • Wahl S., Ryser P. & Edwards P.J. 2001. Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply. Ann. Bot. 88: 1071–1078.

    Article  Google Scholar 

  • Wells C.E. & Eissenstat D.M. 2003. Beyond the roots of young seedlings: The influence of age and order on fine root physiology. J. Plant Growth Regul. 21: 324–334.

    Article  Google Scholar 

  • Wildová R., Wild J. & Herben T. 2007. Fine-scale dynamics of rhizomes in a grassland community. Ecography 30: 264–276.

    Google Scholar 

  • Zahran H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. R. 63: 968–989.

    CAS  Google Scholar 

  • Zahran H.H. 1998. Structure of root nodules and nitrogen fixation in Egyptian wild herb legumes. Biol. Plantarum 41: 575–585.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Hejcman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmelíková, L., Hejcman, M. Root system variability in common legumes in Central Europe. Biologia 67, 116–125 (2012). https://doi.org/10.2478/s11756-011-0138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0138-7

Key words

Navigation