Skip to main content
Log in

Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic Virus coat protein on rhizosphere microbial community composition and physiological profile

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of transgenic alfalfa (Medicago sativa L.) plants, in comparison to their non-transgenic counterpart, on the density and physiological profiles of aerobic bacteria in the rhizosphere. Plants of transgenic alfalfa expressing the AMVcp-s gene coding for Alfalfa Mosaic Virus coat protein were cultivated in a climatic chamber. Two methods were used to determine the microbial diversity in rhizospheres of transgenic plants. First, the cultivation-dependent plating method, based on the determination of the density of colony-forming bacteria, and second, a biochemical method using the Biolog™ system, based on the utilization of different carbon sources by soil microorganisms. Statistically significant differences in densities of rhizospheric bacteria between transgenic and non-transgenic alfalfa clones were observed in ammonifying bacteria (GTL4/404-1), cellulolytic bacteria (GTL4/404-1, GTL4/402-2, A5-3-3), rhizobial bacteria (GTL4/402-2), denitrifying bacteria (A5-3-3) and Azotobacter spp. (GTL4/402-2). The highest values of substrate utilization by microbial communities and average respiration of C-sources were determined in non-transgenic alfalfa plants of the isogenic line SE/22-GT2. Carbohydrates, carboxylic acids and amino-acids were the most utilized carbon substrates by both Gram-negative and Gram-positive bacteria. Both, the community metabolic diversity and the utilization of C-sources increased in all alfalfa lines with culture time and regardless of transgenic or non-transgenic nature of lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann G. & Kinzel, H. 1992. Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol. Biochem. 24: 543–552.

    Article  Google Scholar 

  • Baumgarte S. & Tebbe C.C. 2005. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol. Ecol. 14: 2539–2551.

    Article  PubMed  CAS  Google Scholar 

  • Betina V., Baráthová H., Fargašová A., Frank V., Horáková K. & Šturdík E. 1987. Microbiological laboratory methods. (In Slovak) Alfa SNTL Publishing House, Bratislava 1987.

    Google Scholar 

  • Blackwood C.B. & Buyer J.S. 2004. Soil microbial communities associated with Bt and non-Bt corn in three soils. J. Environ. Qual. 33: 832–836.

    Article  PubMed  CAS  Google Scholar 

  • Bochner B.T. 1989. Breathprints at the microbial level. Am. Soc. Microbiol. News 55: 536–539.

    Google Scholar 

  • Buckley D.H. & Schmidt T.M. 2003. Diversity and dynamics of microbial communities in soil from agro-ecosystems. Environ. Microbiol. 5: 441–452.

    Article  PubMed  Google Scholar 

  • Bruinsma M., Kowalchuk G.A. & Van Veen J.A. 2003. Effects of genetically modified plants on microbial communities and processes in soil. Biol. Fertil. Soils 37: 329–337.

    Google Scholar 

  • Brusetti L., Francia P., Bertolini C., Pagliuca A., Borin S., Sorlini C., Abruzzese A., Sacchi G., Viti C., Giovannetti L., Giuntini E., Bazzicalupo M. & Daffonchio D. 2004. Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. Plant Soil 266: 11–21.

    Article  CAS  Google Scholar 

  • Chen P.Y., Wang C.K., Soong S.C. & To K.Y. 2003. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11: 287–293.

    Article  CAS  Google Scholar 

  • Cheng W. & Gershenson A. 2007. Carbon fluxes in the rhizosphere, pp. 31–56. In: Cardon Z.G., Whitbeck J.L. (Eds.): The Rhizosphere: An ecological perspective. Elsevier Academic Press, USA 2007.

    Google Scholar 

  • Curtis I.S., Nam H.G., Jun J.Y. & Seo K.H. 2002. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res. 11: 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Di Cello, F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tavacchioni S. & Dalmastri C. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63: 4485–4493.

    PubMed  Google Scholar 

  • Di Giovanni G.D., Watrud L.S., Seidler R.J. & Widmer F. 1999. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microbial. Ecol. 37: 129–139.

    Article  Google Scholar 

  • Donegan K.K., Palm C.J., Fieland V.J., Porteous L.A., Ganio L.M., Schaller D.L., Bucao L.Q. & Seidler R.J. 1995. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. Kurstaki endotoxin. Appl. Soil Ecol. 2: 111–124.

    Article  Google Scholar 

  • Donegan K.K., Seidler R.J., Doyle J.D., Porteous L.A., Di Giovanni G.D. & Watrud L.S. 1999. A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J. Appl. Ecol. 36: 920–936.

    Article  Google Scholar 

  • Dunfield K.E. & Germida J.J. 2003. Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 7310–7318.

    Article  PubMed  CAS  Google Scholar 

  • Ellis R.J., Morgan P., Weightman A.J. & Fry J.C. 2003. Cultivation-dependent and —independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230.

    Article  PubMed  CAS  Google Scholar 

  • Fang M., Kremer R.J., Motavalli P.P. & Davis G. 2005. Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl. Environ. Microbiol. 71: 4132–4136.

    Article  PubMed  CAS  Google Scholar 

  • Faragová N., Faragó J. & Drábeková J. 2005. Evaluation of abundance of aerobic bacteria in the rhizosphere of transgenic and non-transgenic alfalfa lines. Folia Microbiol. 50: 509–514.

    Article  Google Scholar 

  • Faragó J., Hauptvogel P. & Kraic J. 1997. Development of a breeding material of alfalfa with high regeneration ability by recurrent somatic embryogenesis, pp. 38–39. In: Chloupek O. & Simon U. (eds), Seed Production of Lucerne. Academia Prague 1997.

  • Faragó J., Kraic J. & Hauptvogel P. 2000. Development of highly regenerable germplasm and genetic transformation of alfalfa, pp. 117–123. In: Hrazdina P. (ed.), Use of Agriculturally Important Genes in Biotechnology. IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington 2000.

    Google Scholar 

  • Ferreira L.H.P.L., Molina J.C., Brasil C. & Andrade G. 2003. Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganism. Plant Soil 256: 161–168.

    Article  CAS  Google Scholar 

  • Gamborg O.L., Miller R.A. & Ojima, K. 1968: Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Garland J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem. 30: 223–230.

    Article  Google Scholar 

  • Garland J.L. 1997. Analysis and interpretation of communitylevel physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 24: 289–300.

    Article  CAS  Google Scholar 

  • Garland J.L. & Mills A.L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of communitylevel sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351–2359.

    PubMed  CAS  Google Scholar 

  • Giovannetti M., Sbrana C. & Turrini A. 2005. The impact of genetically modified crops on soil microbial communities. Riv. Biol. Biol. Forum 98: 393–418.

    Google Scholar 

  • Giri B., Giang P.H., Kumari R., Prasad R. & Varma A. 2005. Microbial Diversity in soils, pp. 19–55. In: Buscot F. & Varma A. (eds), Microorganisms in soils: Roles in genesis and functions. Springer-Verlag, Berlin Heidelberg 2005.

    Chapter  Google Scholar 

  • Grayston S.J., Griffith G.S., Mawdsley J.L., Campbell C.D. & Bardgett R.D. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33: 533–551.

    Article  CAS  Google Scholar 

  • Haack S.K., Garchow H., Klug M.J. & Forney L.J. 1995. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microbiol. 61: 1458–1468.

    PubMed  CAS  Google Scholar 

  • Harichová J., Karelová E., Chovancová K., Stojnev T., Prokšová M., Brindza J., Brindza P., Tóth D., Pangallo D. & Ferianc P. 2006. Comparison of culturable Gram-negative bacterial community structures in the rhizosphere of three fruit plants. Biologia 61: 663–670.

    Article  Google Scholar 

  • Heuer H., Kroppenstedt R.M., Lottmann J., Berg G. & Smalla K. 2002. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microbiol. 68: 1325–1335.

    Article  PubMed  CAS  Google Scholar 

  • Icoz I., Saxena D., Andow D.A., Zwahlen C. & Stotzky G. 2008. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. J. Environ. Qual. 37: 647–662.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S., Ytow N., Eyura H., Minamisawa K. & Fujimura T. 2006. Soil microbial community analysis in the environmental risk assessment of transgenic plants. Plant Biotechnol. 23: 137–151.

    Article  CAS  Google Scholar 

  • Kirk J.L., Beaudette L.A., Hart M., Moutoglis P., Klironomos J.N., Lee H. & Trevors J.T. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods 58: 169–188.

    Article  PubMed  CAS  Google Scholar 

  • Kúdela O. & Gallo J. 1995. Characterization of the alfalfa mosaic virus strain T6. Acta Virol. 39: 131–135.

    PubMed  Google Scholar 

  • Larkin R.P. & Honeycutt C.W. 2006. Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 96: 68–79.

    Article  PubMed  Google Scholar 

  • LeBlanc P.M., Hamelin R.C. & Filion, M. 2007. Alteration of soil rhizosphere communities following genetic transformation of white spruce. Appl. Environ. Microbiol. 73: 4128–4134.

    Article  PubMed  CAS  Google Scholar 

  • Lottmann J., Heuer H., de Vries J., Mahn A., Düring K., Wackernagel W., Smalla K. & Berg G. 2000. Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol. Ecol. 33: 41–49.

    Article  PubMed  Google Scholar 

  • Lynch J.M., Benedetti A., Insam H., Nuti M.P., Smalla K., Torsvik V. & Nannipieri P. 2004. Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol. Fertil. Soils 40: 363–385.

    Article  CAS  Google Scholar 

  • Mattos K.A. & Oliveira G.B. 1997. Isolation and characterization of Azotobacter strains from Brazilian soils. Rev. Microbiol. 28: 252–255.

    Google Scholar 

  • Min F., Kremer R.J., Motavalli P.P. & Davis G. 2005. Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl. Environ. Microbiol. 71: 4132–4136.

    Article  Google Scholar 

  • Murashige T. & Skoog F. 1962: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Oger P., Petit A. & Dessaux Y. 1997. Genetically engineered plants producing opines alter their biological environment. Nat. Biotechnol. 15: 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Paul E.A. & Clark F.E. 1989. Soil Microbiology and Biochemistry. Academic Press, San Diego, Boston, London, New York, 340 pp.

    Google Scholar 

  • Poonguzhali S., Madhaiyan M. & Sa T. 2006. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp. pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167–180.

    Article  CAS  Google Scholar 

  • Preston-Mafham J., Boddy L. & Randerson P.F. 2002. Analysis of microbial community functional diversity using sole-carbonsource utilization profiles — a critique. FEMS Microbiol. Ecol. 42: 1–14.

    PubMed  CAS  Google Scholar 

  • Saxena D. & Stotzky G. 2001. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol. Biochem. 33: 1225–1230.

    Article  CAS  Google Scholar 

  • Schinner F., Öhlinger R., Kandeler E. & Margesin R. 1996. Methods in Soil Biology. Springer-Verlag, Berlin, Heidelberg, 426 pp.

    Google Scholar 

  • Schmalenberger A. & Tebbe C.C. 2002. Bacterial community in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A., Kan F.Y. & Pfeifer U. 2002. Diversity and community structure of culturable Bacillus spp. populations in the rhizospheres of transgenic potatoes expressing the lytic peptide cecropin B. Appl. Soil Ecol. 17: 1–10.

    Google Scholar 

  • Shen R.F., Cai H. & Gong W.H. 2006. Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285: 149–159.

    Article  CAS  Google Scholar 

  • Siciliano S.D., Theoret C.M., De Freitas J.R., Hucl P.J. & Germida J.J. 1998. Differences in the microbial communities associated with roots of different cultivars of canola and wheat. Can. J. Microbiol. 44: 844–851.

    Article  CAS  Google Scholar 

  • Sigler V. 2004. Community level physiological profiling (CLPP). http://www.eeescience.utoledo.edu/Faculty/Sigler/ (accessed 13.7.2009).

  • Smalla K., Wieland G., Buchner A., Rock A., Parzy J., Kaiser S., Loskot N., Heuer H. & Berg G. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742–4751.

    Article  PubMed  CAS  Google Scholar 

  • Somasegaran P. & Hoben H.J. 1994. Handbook for Rhizobia. Springer-Verlag, New York, 450 pp.

    Google Scholar 

  • Soriano S. & Walker N. 1968: Isolation of ammonia-oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31: 493–497.

    PubMed  CAS  Google Scholar 

  • Stotzky G., Broder M.W., Doyle J.D. & Jones R.A. 1993. Selected methods for the detection and assessment of ecological effects resulting from the release of genetically engineered microorganisms to the terrestrial environment. Adv. Appl. Microbiol. 38: 1–98.

    Article  Google Scholar 

  • Tesfaye M., Temple S.J., Allan D.L., Vance C.P. & Samac D.A. 2001. Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiol. 127: 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  • Watrud L.S., Misra S., Gedamu L., Shiroyama T., Maggard S. & Di Giovanni G. 2006. Ecological risk assessment of alfalfa (Medicago varia L.) genetically engineered to express a human metallothionein (hMT) gene. Water Air Soil Pollut. 176: 329–349.

    Article  CAS  Google Scholar 

  • Widmer F. 2007. Assessing effects of transgenic crops on soil microbial communities. Adv. Biochem. Engin. Biotechnol. 107: 207–234.

    CAS  Google Scholar 

  • Zak J.C., Willig M.R., Moorhead D.L. & Wildman H.G. 1994. Functional diversity of microbial communities: a quantitative approach. Soil. Biol. Biochem. 26: 1101–1108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Faragó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faragová, N., Gottwaldová, K. & Faragó, J. Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic Virus coat protein on rhizosphere microbial community composition and physiological profile. Biologia 66, 768–777 (2011). https://doi.org/10.2478/s11756-011-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0082-6

Key words

Navigation