Skip to main content
Log in

In vitro synthesis of glycogen: the structure, properties, and physiological function of enzymatically-synthesized glycogen

  • Review
  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This review describes a new enzymatic method for in vitro glycogen synthesis and its structure and properties. In this method, short-chain amylose is used as the substrate for branching enzymes (BE, EC 2.4.1.18). Although a kidney bean BE and Bacillus cereus BE could not synthesize high-molecular weight glucan, BEs from 6 other bacterial sources produced enzymatically synthesized glycogen (ESG). The BE from Aquifex aeolicus was the most suitable for the production of glycogen with a weight-average molecular weight (M w) of 3,000–30,000 k. The molecular weight of the ESG is controllable by changing the concentration of the substrate amylose. Furthermore, the addition of amylomaltase (AM, EC 2.4.1.25) significantly enhanced the efficiency of this process, and the yield of ESG reached approximately 65%. Typical preparations of ESG obtained by this method were subjected to structural analyses. The average chain length, interior chain length, and exterior chain length of the ESGs were 8.2–11.6, 2.0–3.3, and 4.2–7.6, respectively. Transmission electron microscopy and intrinsic viscosity measurement showed that the ESG molecules formed spherical particles. Unlike starch, the ESGs were barely degraded by pullulanase. Solutions of ESG were opalescent (milky-white and slightly bluish), and gave a reddishbrown color on the addition of iodine. These analyses revealed that ESG shares similar molecular shapes and solution properties with natural-source glycogen. Moreover, ESG had macrophage-stimulating activity and its activity depends on the molecular weight of ESG. We successfully achieved large scale production of ESG. ESG could lead to new industrial applications, such as in the food, chemical, and pharmaceutical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

amylomaltase

BE:

branching enzyme

DP:

degree of polymerization

ESG:

enzymatically synthesized glycogen

GP:

α-glucan phosphorylase

HPSEC-MALLS-RI:

high-performance size-exclusion chromatography with a multiangle laser light scattering photometer and a differential refractive index detector

IAM:

isoamylase

NSG:

natural-source glycogen

SP:

sucrose phosphorylase

TEM:

transmission electron microscopy

References

  • Boyer C. & Preiss J. 1977. Biosynthesis of bacterial glycogen: purification and properties of the Escherichia coli B α-1,4-glucan: α-1,4-glucan 6-glycosyltransferase. Biochemistry 16: 3693–3699.

    Article  PubMed  CAS  Google Scholar 

  • Boyer C.D., Simpson E.K.G. & Damewood P.A. 1982. The possible relationship of starch and phytoglycogen in sweet corn. II. The role of branching enzyme I. Starch/Stärke 34: 81–85.

    Article  CAS  Google Scholar 

  • Cori G.T. & Cori C.F. 1943. Crystalline muscle phosphorylase. IV. Formation of glycogen. J. Biol. Chem. 151: 57–63.

    CAS  Google Scholar 

  • Fujii K., Takata H., Yanase M., Terada Y., Ohdan K., Takaha T., Okada S. & Kuriki T. 2003. Bioengineering and application of novel glucose polymers. Biocatal. Biotransform. 21: 167–172.

    CAS  Google Scholar 

  • Fukui T., Shimomura S. & Nakano K. 1982. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes. Mol. Cell. Biochem. 42: 129–144.

    Article  PubMed  CAS  Google Scholar 

  • Geddes R. 1986. Glycogen: a metabolic viewpoint. Biosci. Rep. 6: 415–428.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T., Kurose M., Oku K., Nishimoto T., Chaen H., Fukuda S. & Tsujisaka Y. 2006. Digestibility and suppressive effect on rats’ body fat accumulation of cyclic tetrasaccharide. J. Appl. Glycosci. 53: 233–239.

    CAS  Google Scholar 

  • Hata K., Hata M., Hata M. & Matsuda K. 1983. The structures of shellfish glycogens I. J. Jpn. Soc. Starch Sci. 30: 88–94.

    CAS  Google Scholar 

  • Hata K., Hata M., Hata M. & Matsuda K. 1984. A proposed model of glycogen particle. J. Jpn. Soc. Starch Sci. 31: 146–155.

    CAS  Google Scholar 

  • Heath E.M., Morken N.W., Campbell K.A., Tkach D., Boyd E.A. & Strom D.A. 2001. Use of buccal cells collected in mouthwash as a source of DNA for clinical testing. Arch. Pathol. Lab. Med. 125: 127–133.

    PubMed  CAS  Google Scholar 

  • Kajiura H., Kakutani R., Akiyama T., Takata H. & Kuriki T. 2008. A novel enzymatic process for glycogen production. Biocatal. Biotransform. 26: 133–140.

    Article  CAS  Google Scholar 

  • Kajiura H., Takata H., Kuriki T. & Kitamura S. 2010. Structure and solution properties of enzymatically synthesized glycogen. Carbohydr. Res. 345: 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Kakutani R., Adachi Y., Kajiura H., Takata H., Kuriki T. & Ohno N. 2007. Relationship between structure and immunostimulating activity of enzymatically synthesized glycogen. Carbohydr Res. 342: 2371–2379.

    Article  PubMed  CAS  Google Scholar 

  • Kakutani R., Adachi Y., Kajiura H., Takata H., Ohno N. & Kuriki T. 2008. Stimulation of macrophage by enzymatically synthesized glycogen: the relationship between structure and biological activity. Biocatal. Biotransform. 26: 152–160.

    Article  CAS  Google Scholar 

  • Kitahata S. 1995. Debranching enzymes (isoamylase, pullulanase), pp. 18–27. In: The Amylase Research Society of Japan (ed.), Enzyme Chemistry and Molecular Biology of Amylases and Related Enzymes, CRC Press, Boca Raton.

    Google Scholar 

  • Kitahata S. & Okada S. 1988. Branching enzymes, pp. 143–154. In: The Amylase Research Society of Japan (ed.), Handbook of Amylase and Related Enzymes, Pergamon Press, Oxford.

    Google Scholar 

  • Kitamura S. 1996. Starch polymers, natural and synthetic, pp. 7915–7922. In: Salamone J.C. (ed.), Polymeric Materials Encyclopedia, CRC Press, Boca Raton.

    Google Scholar 

  • Kitamura S., Kobayashi K., Tanahashi H., Ozaki T. & Kuge T. 1989. On the Mark-Houwink-Sakurada equation for amylase in aqueous solvents. (Dilute solution properties of starch related polysaccharides. Part 1) Denpun Kagaku 36: 303–309.

    CAS  Google Scholar 

  • Kjoelberg O., Manners D.J. & Wright A. 1963. α-1,4-Glucosans. XVII. The molecular structure of some glycogens. Comp. Biochem. Physiol. 34: 353–365.

    PubMed  CAS  Google Scholar 

  • Manners D.J. 1991. Recent developments in our understanding of glycogen structure. Carbohydr. Polym. 16: 37–82.

    Article  CAS  Google Scholar 

  • Mantovani B. 1981. Phagocytosis of immune complexes mediated by IgM and C3 receptors by macrophages from mice treated with glycogen. J Immunol. 126: 127–130.

    PubMed  CAS  Google Scholar 

  • Ohdan K., Fujii K., Yanase M., Takaha T. & Kuriki, T. 2006. Enzymatic synthesis of amylose. Biocatal. Biotransform. 24: 77–81.

    Article  CAS  Google Scholar 

  • Okada K., Yoneyama M., Mandai T., Aga H., Sakai S. & Ichikawa T. 1990. Digestion and fermentation of pullulan. J. Jpn. Soc. Nutr. Food Sci. 43: 23–29. (in Japanese)

    CAS  Google Scholar 

  • Parodi A.J., Krisman C.R., Leloir L.F. & Mordoh J. 1967. Properties of synthetic and native liver glycogen. Arch. Biochem. Biophys. 121: 769–778.

    Article  PubMed  CAS  Google Scholar 

  • Praznik W., Rammesmayer G. & Spies T. 1992. Characterization of the (1→4)-α-d-glucan-branching 6-glycosyltransferase by in vitro synthesis of branched starch polysaccharides. Carbohydr. Res. 227: 171–182.

    Article  CAS  Google Scholar 

  • Ryoyama K., Kidachi Y., Yamaguchi H., Kajiura H. & Takata H. 2004. Anti-tumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan, glycogen. Biosci. Biotechnol. Biochem. 68: 2332–2340.

    Article  PubMed  CAS  Google Scholar 

  • Takata H., Kajiura H., Furuyashiki T., Kakutani R. & Kuriki T. 2009. Fine structural properties of natural and synthetic glycogens. Carbohydr. Res. 344: 654–659.

    Article  PubMed  CAS  Google Scholar 

  • Takata H., Kato T., Takagi M. & Imanaka T. 2005. Cyclization reaction catalyzed by Bacillus cereus branching enzyme, and the structure of cyclic glucan produced by the enzyme from amylose. J. Appl. Glycosci. 52: 359–365.

    CAS  Google Scholar 

  • Takaya Y. 2000. Biological activities of natural resources around us are now in the limelight. Yakugaku Zasshi 120: 1075–1089.

    PubMed  CAS  Google Scholar 

  • Takaya Y., Uchisawa H., Ichinohe H., Sasaki J., Ishida K. & Matsue H. 1998. Antitumor glycogen from scallops and the interrelationship of structure and antitumor activity. J. Mar. Biotechnol. 6: 208–213.

    PubMed  Google Scholar 

  • Thorpe B. D. & Marcus S. 1967. Phagocytosis and intracellular fate of Pasteurella tularensis: in vitro effects of exudates stimulants and streptomycin on phagocytic cells. J Reticuloendothel Soc. 4: 10–23.

    PubMed  CAS  Google Scholar 

  • Tolmasky D. S. & Krisman C. R. 1987. The degree of branching in (α1,4)-(α1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymes. Eur. J. Biochem. 168: 393–397.

    Article  PubMed  CAS  Google Scholar 

  • van der Vlist J., Palomo Reixach M., van der Maarel M., Dijkhuizen L., Schouten A.J. & Loos K. 2008. Synthesis of branched polyglucans by the tandem action of potato phosphorylase and Deinococcus geothermalis glycogen branching enzyme. Macromol. Rapid Commun. 29: 1293–1297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kajiura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiura, H., Takata, H., Akiyama, T. et al. In vitro synthesis of glycogen: the structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia 66, 387–394 (2011). https://doi.org/10.2478/s11756-011-0053-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0053-y

Key words

Navigation