Skip to main content
Log in

Lipids-free waxy corn starch as a substrate for distillery yeasts Saccharomyces cerevisiae

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Utilization of lipids-free waxy starch by distillery yeasts in fuel ethanol production can contribute to better management of renewable resources, like cereals, especially maize Zea mays L. But the efficient conversion of starch into glucose-rich fermentable substrate, and subsequently to ethanol, needs more research on hydrolysis and fermentation conditions. The aim of this study was to evaluate the lack of natural corn grain lipids on the process of simultaneous saccharification and fermentation using chemometric techniques of designed experiments, commercial enzymatic preparations and distillery yeasts Saccharomyces cerevisiae CCY-11-3. Based on the results and statistical software support we can conclude that extraction of lipids from corn grains did not lead to statistically significant increase or decrease of glucose concentration in starch hydrolysis. The ethanol concentration in fermentation mash according to analysis was not statistically significantly affected by lipids extraction. The separated lipids could serve as a source of very valuable corn oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryksa B.C. & Yada R.Y. 2009. Food biochemistry, pp. 57–84. In: Campbell-Platt G. (ed.), Food Science and Technology, John Wiley & Sons, Chichester.

    Google Scholar 

  • Campos E.J., Quereshi N. & Blaschek H.P. 2002. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Appl. Biochem. Biotechnol. 98–100: 553–561.

    Article  PubMed  Google Scholar 

  • Dickey L.C., Kurantz M.J., Johnston D.B., McAloon A.J. & Moreau R.A. 2010. Grinding and cooking dry-fractionated corn germ to optimize aqueous enzymatic oil extraction. Ind. Crops Products 32: 36–40.

    Article  CAS  Google Scholar 

  • Dziedzic S.Z. & Kearsley M.W. 1995. Handbook of Starch Hydrolysis Products and Their Derivates. Springer, 296 p.

  • Echt C.S. & Schwartz D. 1981. Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99: 275–284.

    PubMed  CAS  Google Scholar 

  • Ezeji T.C., Qureshi N. & Blaschek H.P. 2007. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460–1469.

    Article  PubMed  CAS  Google Scholar 

  • Huang B.Q., Tian M.L., Zhang J.J. & Huang Y.B. 2010. Waxy locus and its mutant types in maize Zea mays L. Agric. Sci. China. 9: 1–10.

    Article  Google Scholar 

  • Huang J.J. & White P.J. 1993. Waxy corn starch: monoglyceride interaction in a model system. Cereal Chem. 70: 42–47.

    CAS  Google Scholar 

  • Kálmán G. & Réczey K. 2007. Possible ways of bio-refining and utilizing the residual lignocelluloses of corn growing and processing. Chem. Eng. 51: 29–36.

    Google Scholar 

  • Klösgen R.B., Gierl A., Schwarz-Sommer Z. & Saedler H. 1986. Molecular analysis of the waxy locus of Zea mays. Mol. Genet. Genomics 203: 237–244.

    Article  Google Scholar 

  • Kunamneni A. & Singh S. 2005. Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem. Eng. J. 27: 179–190.

    Article  CAS  Google Scholar 

  • Lopes I.M.G. & Bernardo-Gil M.G. 2005. Characterisation of acorn oils extracted by hexane and by supercritical carbon dioxide. Eur. J. Lipid Sci. Technol. 107: 12–19.

    Article  CAS  Google Scholar 

  • Manikandan K. & Viruthagiri T. 2010. Kinetic and optimization studies on ethanol production from corn flour. Int. J. Environ. Sci. Tech. 3: 65–69.

    CAS  Google Scholar 

  • Moreau R.A., Powell M.J. & Singh V. 2003. Pressurized liquid extraction of polar and nonpolar lipids in corn and oats with hexane, methylene chloride, isopropanol, and ethanol. J. Am. Oil Chem. Soc. 80: 1063–1067.

    Article  CAS  Google Scholar 

  • Murthy G.S., Singh V., Johnston D.B., Rausch K.D. & Tumbleson M. E. 2006. Improvement in fermentation characteristics of degermed ground corn by lipid supplementation, J. Ind. Microbiol. Biotechnol. 33: 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa Y. & Wang Y.J. 2004. Effect of annealing on starchpalmitic acid interaction. Carbohydr. Polymers 57: 327–335.

    Article  CAS  Google Scholar 

  • Nelson O E. 1968. The waxy locus in maize. 11. The location of the controlling element alleles. Genetics 60: 507–524.

    PubMed  CAS  Google Scholar 

  • O’Brien R.D. 2009. Fats and Oils: Formulating and Processing for Applications. CRC Press, Boca Raton, 744 p.

    Google Scholar 

  • Oderinde R.A., Esuoso K.O. & Adesogan E.K. 1990. The effect of lipids on the alcoholic fermentation of molasses using Saccharomyces cerevisiae. Mol. Nutr. Food Res. 34: 681–688.

    CAS  Google Scholar 

  • Okagaki R.J. & Wessler S.R. 1988. Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics 120: 1137–1143.

    PubMed  CAS  Google Scholar 

  • Ponnampalam E., Steele D.B., Burgdorf D. & McCalla D. 2004. Effect of germ and fiber removal on production of ethanol from corn. Appl. Biochem. Biotechnol. 113–116: 834–842.

    Google Scholar 

  • Ratnam B.V.V., Narasimha Rao M., Damodar Rao M., Subba Rao S. & Ayyana C. 2003. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J. Microbiol. Biotechnol. 19: 523–526.

    Article  CAS  Google Scholar 

  • Rathore S.S.S., Paulsen M.R., Sharma V. & Singh V. 2009. Optimization of yeast and enzyme dose for dry-grind corn fermentation process for ethanol production. Transactions ASABE 52: 867–875.

    CAS  Google Scholar 

  • Sandhu K.S., Singh N. & Malhi N.S. 2007. Some properties of corn grains and their flours I: Physicochemical, functional and chapatimaking properties of fluors. Food Chem. 101: 938–946.

    Article  CAS  Google Scholar 

  • Tester R.F. & Morrison W.R. 1994. Properties of damaged starch granules. V. Composition and swelling of fractions of wheat starch in water at various temperatures. J. Cereal Sci. 20: 175–180.

    Article  CAS  Google Scholar 

  • Villwock V.K., Eliasson A.C., Silverio J. & BeMiller J.N. 1998. Starch-lipid interactions in common, waxy, ae du, and ae su2 maize starches examined by differential scanning calorimetry. Cereal Chem. 76: 292–298.

    Article  Google Scholar 

  • Walker G.M. 1998. Yeast Physiology and Biotechnology. John Wiley and Sons, Chichester, 353 p.

    Google Scholar 

  • Whitt S.R., Wilson L.M., Tenaillon M.I., Gaut B.S. & Buckleriv E.S. 2002. Genetic diversity and selection in the maize starch pathway. Proc. Natl. Acad. Sci. USA 99: 12959–12962.

    Article  PubMed  CAS  Google Scholar 

  • Wu X., Zhao R., Wang D., Bean S.R., Seib P.A., Tuinstra M.R., Campbell M. & O’Brien A. 2006. Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch rich media. Cereal Chem. 83: 569–575.

    Article  CAS  Google Scholar 

  • Zhao Y., Liu H.M. & Gu Y. 2008. Analysis of characteristic of codon usage in waxy gene of Zea mays. J. Maize Sci. 16: 16–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Ondáš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ondáš, V., Horváthová, V. & Šturdík, E. Lipids-free waxy corn starch as a substrate for distillery yeasts Saccharomyces cerevisiae . Biologia 66, 395–400 (2011). https://doi.org/10.2478/s11756-011-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0047-9

Key words

Navigation