Skip to main content

Nocturnal urinary melatonin levels and urine biochemistry in microwave-irradiated rats

Abstract

The aim of this study was to explore whether, during the course of a 15 days-lasting experiment, a two hours per day and five days per week, 2.45 GHz microwave whole-body irradiation may substantially and therefore provably affect rats’ nocturnal urinary 6-hydroxy-melatonin sulphate (aMT6s) excretion and urinalysis parameters. The average whole-body specific absorption rate (SAR) equalled to 1.25 (± 0.36 SE) W/kg. To collect nocturnal urine samples, animals were held in individual metabolic cages every experimental night from 7:00 PM till 7:00 AM next day. The concentration of aMT6s in rat urine samples was determined by a direct radioimmunoassay. Bilirubin, ketones, and urine protein content have been determined via multiple-use reagent strips. In comparison to the sham-exposed group, no significant changes in body temperature and food or water intake were observed in the exposed group. A decline in aMT6s, determined in the exposed rats, was observed from day 8 to day 11 of the experiment (P < 0.05). The aMT6s level remained consistently low until the end of the experiment, but not significantly lower than the control values. The results of the urine samples biochemical workup failed to reveal any significant differences between the exposed and the control animal groups. The results of this study suggest that, under the above described experimental conditions, repeated 2.45 GHz irradiation could act as a stressor and therefore influence the melatonine balance in rat.

This is a preview of subscription content, access via your institution.

References

  1. Bakos J., Kubinyi G., Sinay H. & Thuróczy G. 2003. GSM Modulated radiofrequency radiation does not affect 6-sulfatoxymelatonin excretion of rats. Bioelectromagnetics 24: 531–534. DOI 10.1002/bem.10172

    PubMed  Article  Google Scholar 

  2. Brainard G.C., Kavet R. & Kheifets L.I. 1999. The relationship between electromagnetic field and light exposure to melatonin and breast cancer risk: A review of the relevant literature. J. Pineal Res. 26: 65–100.

    PubMed  Article  CAS  Google Scholar 

  3. Brendel H., Niehaus M. & Lerchl A. 2000. Direct suppressive effects of weak magnetic fields (50Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J. Pineal Res. 29: 228–233.

    PubMed  Article  CAS  Google Scholar 

  4. Busljeta I., Trosic I. & Milkovic-Kraus S. 2004. Erythropoietic changes in rats after 2.45 GHz nonthermal irradiation. Int. J. Hyg. Environ. Health 207: 549–554. DOI 10.1078/1438-4639-00326

    PubMed  Article  Google Scholar 

  5. Cherry N. 2000. Probable Health Effects Associated with Base Station in Communities: The Need for Health Surveys, pp. 109–114. In: Proc. International Conference on Cell Tower Sitting. Salzburg, Austria.

  6. Cleary S.F. 1997. In vitro studies of the effects of nonthermal radiofrequency and microwave radiation, pp. 119–129. In: Bernhardt J.H., Matthes R. & Repacholi M.H. (eds), Non-Thermal Effects of RF Electromagnetic Fields, ICNRP 3/97, Märkl-Druck, München.

  7. deSeze R., Ayoub J., Peray P., Miro L. & Touitou Y. 1999. Evaluation in humans of the effects of radiocellular telephones on the circadian patterns of melatonin secretion, a chronobiological rhythm marker. J. Pineal Res. 27: 237–242.

    Article  CAS  Google Scholar 

  8. Durney C.H., Iskander M.F. & Massoudy H. 1986. Radiofrequency Radiation Dosimetry Handbook (SAM-TR-80-32, 4th ed). http://niremf.ifac.cnr.it/docs/HANDBOOK/home.htm (accessed 01.09.2008).

  9. Fernie K.J., Bird D.J. & Petitclerc D. 1999. Effects of electromagnetic fields on photophasic circulating melatonin levels in American Kestrels. Environ. Health. Perspect. 107: 901–904.

    PubMed  Article  CAS  Google Scholar 

  10. Fritze K., Wiessner C., Kuster N., Sommer C., Gass P., Hermann D.M., Klessing M. & Hossmann K.A. 1997. Effect of global system of mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81: 627–639. DOI 10.1016/S0306-4522(97)00228-5

    PubMed  Article  CAS  Google Scholar 

  11. Grota L.J., Reiter R.J., Keng P. & Michaelson S. 1994. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats. Bioelectromagnetics 15(5): 427–437. DOI 10.1002/bem.2250150506

    PubMed  Article  CAS  Google Scholar 

  12. Hata K., Yamaguchi H., Tsurita G., Watanabe S., Wake K., Taki M., Ueno S. & Nagawa H. 2005. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics 26: 49–53. DOI 10.1002/bem.20080

    PubMed  Article  CAS  Google Scholar 

  13. Hyland G.J. 2001. The Physiological and Environmental Effects of Non-ionising Electromagnetic Radiation. http://www.whale.to/b/hyland1.html (accessed 01.09.2008).

  14. IEGMP Independent Expert Group on Mobile Phones. 2001. Mobile Phones and Health. http://www.iegmp.org.uk/report/text.htm (accessed 01.09.2008).

  15. Imaida K., Hagiwara A., Yoshino H., Tamano S., Sano M., Futakuchi M., Ogawa K., Asamoto M. & Shirai T. 2000. Inhibitory effects of low doses of melatonin on induction of preneoplastic liver lesions in a medium-term liver bioassay in F344 rats: relation to the influence of electromagnetic near field exposure. Cancer Lett. 155: 105–114.

    PubMed  Article  CAS  Google Scholar 

  16. Jarupat S., Kawabata A., Tokura H. & Borkiewicz A. 2003. Effect of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J. Physiol. Anthropol. Appl. Human Sci. 22: 61–63. DOI 10.2114/jpa.2261

    PubMed  Article  Google Scholar 

  17. Lai H. & Singh N.P. 1996. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 69: 513–521.

    PubMed  Article  CAS  Google Scholar 

  18. Lai H. & Singh N.P. 1997. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 18: 446–454. DOI 10.1002/(SICI)1521–186X(1997)18:6〈446::AIDBEM7〉3.0.CO;2–2

    PubMed  Article  CAS  Google Scholar 

  19. Lee J.M., Stormshak F., Thompson J.M., Thinesen P., Painter L.J., Olenchek E.G., Hess D.L., Forbes R. & Foster D.L. 1993. Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields. Biol. Reprod. 49: 857–864.

    PubMed  Article  CAS  Google Scholar 

  20. Leszczynski D., Joenväärä S., Reivinen J. & Kuokka R. 2002. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanisms for cancer- and blood-brain barrier-related effects. Differentiation 70(2–3): 120–129. DOI 10.1046/j.1432-0436-2002.700207.x

    PubMed  Article  CAS  Google Scholar 

  21. Repacholi M.H. 1998. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19: 1–19. DOI 10.1002/(SICI)1521–186X(1998)19:1〈1::AID-BEM1〉3.0.CO;2–5

    PubMed  Article  CAS  Google Scholar 

  22. Sage S. 2000. An overview of radiofrequency/microwave radiation studies relevant to wireless communication and data, pp. 73–90. In: Proc. International Conference on Cell Tower Sitting. Salzburg, Austria.

  23. Saunders R.D., Cridland N.A., Kowalczuk C.I. & Sienkiewicz Z.J. 1997. In vivo biological studies relevant to low level RF health effects, pp. 145–161. In: Bernhardt J.H., Matthes R. & Repacholi M.H. (eds), Non-thermal Effects of RF Electromagnetic Fields, ICNRP 3/97. Märkl-Druck, München.

    Google Scholar 

  24. Stärk K.D.C, Krebs T., Altpeter E., Manz B., Griot C. & Abelin T. 1997. Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle. J. Pineal. Res. 22: 171–176.

    PubMed  Article  Google Scholar 

  25. Stevens R.G. & Davis S. 1996. The melatonin hypothesis: electric power and breast cancer. Environ. Health Perspect. 104(Suppl. 1): 135–140.

    PubMed  Article  CAS  Google Scholar 

  26. Tice R., Hook G. & McRee D.I. 2002. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23: 113–126. DOI 10.1002/bem.104

    PubMed  Article  CAS  Google Scholar 

  27. Trosic I. 2001. Multinucleated giant cell appearance after whole body microwave irradiation of rats. Int. J. Hyg. Environ. Health 204: 133–138. DOI 10.1078/1438-4639-00078

    PubMed  Article  CAS  Google Scholar 

  28. Trosic I., Busljeta I., Kasuba V. & Rozgaj R. 2002. Micronucleus induction after whole-body microwave irradiation of rats. Mutat. Res. 521: 73–79.

    PubMed  CAS  Google Scholar 

  29. Trosic I., Busljeta I. & Pavicic I. 2004a. Blood-forming system in rats after whole-body microwave exposure; reference to the lymphocytes. Toxicol. Lett. 154: 125–132. DOI 10.1016/j.tox.let.2004.07.011

    PubMed  Article  CAS  Google Scholar 

  30. Trosic I., Busljeta I., Modlic B. 2004b. Investigation of the genotoxic effects of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis 19: 361–364.

    PubMed  Article  CAS  Google Scholar 

  31. Trošić I., Mataušićc-Pišl M., Radalj Ž. & Prlićc I. 1999. Animal study on electromagnetic field biological potency. Arh. Hig. Rada Toksikol. 50: 5–11.

    PubMed  Google Scholar 

  32. Verschaeve L. & Maes A. 1998. Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat. Res. 410: 141–165.

    PubMed  Article  CAS  Google Scholar 

  33. Vollrath L., Spessert R., Kratzsch T., Keiner M. & Hollmann H. 1997. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Bioelectromagnetics 18: 376–387. DOI 10.1002/(SICI)1521-86X(1997)18:5<376::AED-BEM5〉3.0.CO;2#

    PubMed  Article  CAS  Google Scholar 

  34. Willemsen EW. 1974. Understanding Statistical Reasoning. Freeman WH and Company, San Francisco, 145 pp. DOI: 10.2478/s11756-009-0124-5

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivancica Trosic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trosic, I., Busljeta, I., Pavicic, I. et al. Nocturnal urinary melatonin levels and urine biochemistry in microwave-irradiated rats. Biologia 64, 798–802 (2009). https://doi.org/10.2478/s11756-009-0139-y

Download citation

Key words

  • nocturnal urinary 6-hydroxy-melatonin sulphate (aMT6s)
  • urinary metabolites
  • 2.45 GHz microwave
  • whole-body irradiation
  • rat