Skip to main content
Log in

Oligogalacturonate hydrolase with unique substrate preference from the pulp of parsley roots

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The main form of pectate hydrolases in the cell wall of parsley roots showed a unique substrate preference of a plant exopolygalacturonase because it clearly preferred the substrates with degree of polymerization about 10. This form was separated from the others, purified and characterized. Enzyme exhibited sharp pH optimum corresponding to pH 4.7, molecular mass 53.5 kDa, and isoelectric point 5.3. It was stable at 50°C in 2-h assay and had optimum of temperature at 60°C (activation energy being 37.0 kJ/mol). The interaction with concanavalin A indicated the glycosylation of enzyme. Substrates were cleaved from the non-reducing end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-MMP:

methyl-α-d-mannopyranoside

DP:

degree of polymerization

exoPG:

exopolygalacturonase

GH:

glycoside hydrolase

HG:

homogalacturonan

OGH:

oligogalacturonate hydrolase (oligogalacturonase)

OGH6:

OGH preferring hexagalacturonate

OGH10:

OGH with preference for decamer

PG:

polygalacturonase

RG I:

rhamnogalacturonan I

References

  • Abbott D.W. & Boraston A.B. 2007. The structural basis for exopolygalacturonase activity in family 28 glycoside hydrolase. J. Mol. Biol. 368: 1215–1222.

    Article  PubMed  CAS  Google Scholar 

  • Biely P., Benen J., Heinrichová K., Kester H.C. & Visser J. 1996. Inversion of configuration during hydrolysis of α-1,4-galacturonic linkage by three Aspergillus polygalacturonases. FEBS Lett. 382: 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Carpita N.C. & Gibeaut D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Cho S.W., Lee S. & Shin W. 2001. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. J. Mol. Biol. 314: 863–878.

    Article  CAS  Google Scholar 

  • Dzúrová M., Linek K. & Stratilová E. 1995. Inhibition of exopolygalacturonase from carrots by reaction products and by their basic analogues. Biologia 50: 595–599.

    Google Scholar 

  • Federici L., Caprari C., Mattei B., Savino C., Di Matteo A., De Lorenzo G., Cervone F. & Tsernoglou D. 2001. Structural requirements of endopolygalacturonase for the interaction with PGIP. Proc. Natl. Acad. Sci. USA 98: 13425–13430.

    Article  PubMed  CAS  Google Scholar 

  • Flodrová D., Dzúrová M., Lišková D., Ait Mohand F., Mislovičová D., Malovíková A., Voburka Z., Omelková J. & Stratilová, E. 2007. Pectate hydrolases of parsley (Petroselinum crispum) roots. Z. Naturforsch. 62c: 382–388.

    Google Scholar 

  • Garcia-Romera I. & Fry S.C. 1995. The longevity of biologicallyactive oligogalacturonides in rose cell cultures. Degradation by exo-polygalacturonase. J. Exp. Botany 46: 1853–1857.

    Article  CAS  Google Scholar 

  • Hatanaka C. & Ozawa J. 1964. Enzymic degradation of pectic acid. I. Limited hydrolysis of pectic acids by carrot exopolygalacturonase. Agric. Biol. Chem. 28: 672–632.

    Google Scholar 

  • Hasegawa S. & Nagel C.W. 1968. Isolation of an oligogalacturonate hydrolase from a Bacillus specie. Arch. Biochem. Biophys. 124: 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Heinrichová K. 1977. Isolation, characterization and mode of action of exo-d-galacturonanase from carrot. Collect. Czech. Chem. Commun. 42: 3214–3221.

    Google Scholar 

  • Heinrichová K. 1983. Preparation of oligogalacturonic acids by enzymatic hydrolysis. Biologia 38: 335–342.

    Google Scholar 

  • Heinrichová K., Heinrich J., Dzúrová M. & Ziolecki A. 1993. Mode of action and partial purification of the active centre of exopoly-α-d-galacturonosidase from Selenomonas ruminantium. Collect. Czech. Chem. Commun. 58: 681–692.

    Article  Google Scholar 

  • Heinrichová K. & Rexová-Benková L’. 1976. Purification and characterization of an extracellular exo-d-galacturonanase of Aspergillus niger. Biochim. Biophys. Acta 422: 349–356.

    PubMed  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. 280: 309–316.

    PubMed  CAS  Google Scholar 

  • Henrissat B. & Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Kester H.C.M., Kusters-van Someren M.A., Müller Y. & Visser J. 1996. Primary structure and characterization of an exopolygalacturonase from Aspergillus tubigensis. Eur. J. Biochem. 240: 738–746.

    Article  PubMed  CAS  Google Scholar 

  • Kohn R. & Furda I. 1967. Calcium ion activity in solutions of calcium pectinate. Collect. Czech. Chem. Commun. 32: 1925–1937.

    CAS  Google Scholar 

  • Kohn R. & Luknár O. 1977. Intermolecular calcium ion binding on polyuronates — polygalacturonate and polyguluronate. Collect. Czech. Chem. Commun. 42: 731–744.

    CAS  Google Scholar 

  • Koller A. & Neukom H. 1964. Detection of oligogalacturonic acids by thin-layer chromatography. Biochim. Biophys. Acta 83: 366–367.

    PubMed  CAS  Google Scholar 

  • Liao C.H., Revear L., Hotchkiss A. & Savary B. 1999. Genetic and biochemical characterization of an exopolygalacturonase and pectate lyase from Yersinia enterocolitica. Can. J. Microbiol. 45: 396–403.

    Article  PubMed  CAS  Google Scholar 

  • Markovič O. & Janeček Š. 2001. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng. 14: 615–631.

    Article  PubMed  Google Scholar 

  • Martens-Uzunova E.S., Zandleven J.S., Benen J.A.E., Awad H., Kools H.J., Beldman G., Voragen A.G.J., van den Berg J.A. & Schaap P.J. 2006. A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem. J. 400: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Musell H.W. & Strouse B. 1972. Characterization of two polygalacturonases produced by Verticillium albo-atrum. Can. J. Biochem. 50: 625–632.

    Article  Google Scholar 

  • Niture S. 2008. Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia 63: 1–19.

    Article  CAS  Google Scholar 

  • Parenicová L., Kester H.C.M., Benen J.A.E. & Visser J. 2000. Characterization of a novel endopolygalacturonase from Aspergillus niger with unique kinetic properties. FEBS Lett. 467: 333–336.

    Article  PubMed  Google Scholar 

  • Pickersgill R., Smith D., Worboys K. & Jenkins J. 1998. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273: 24660–24664.

    Article  PubMed  CAS  Google Scholar 

  • Pressey R. & Avants J.K. 1975. Modes of action of carrot and peach exopolygalacturonases. Phytochemistry 14: 957–961.

    Article  CAS  Google Scholar 

  • Radola B.J. 1980. Ultrathin-layer isoelectric focusing in 50–100 μm polyacrylamide gels on silanized plates or polyester films. Electrophoresis 1: 43–56.

    Article  CAS  Google Scholar 

  • Rayle D.L. & Cleland R.E. 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271–1274.

    Article  PubMed  CAS  Google Scholar 

  • Rexová-Benková L’. 1970. Separation of oligogalacturonic acids by dextran gel chromatography. Chem. Zvesti 24: 59–62.

    Google Scholar 

  • Rexová-Benková L’. & Markovič O. 1976. Pectic enzymes. Adv. Carbohydr. Chem. Biochem. 33: 323–385.

    Article  PubMed  Google Scholar 

  • Shimizu T., Nakatsu T., Miyairi K., Okuno T. & Kato H. 2002. Active-site architecture of endopolygalacturonase I from Stereum purpurum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 41: 6651–6659.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19–23.

    CAS  Google Scholar 

  • Stratilová E., Dzúrová M., Breierová E. & Omelková J. 2006. Production and biochemical characterization of polygalacturonases produced by Aureobasidium pullulans from forest soil. Ann. Microbiol. 56: 35–40.

    Article  Google Scholar 

  • Stratilová E., Dzúrová M., Malovíková A. & Omelková J. 2005. Oligogalacturonate hydrolase from carrot roots. Z. Naturforsch. 60c: 899–905.

    Google Scholar 

  • Stratilová E., Mislovičová D. & Dzúrová M. 1996. Purification of exopolygalacturonase by affinity chromatography on concanavalin A — bead cellulose. Biotechnol. Tech. 10: 363–366.

    Article  Google Scholar 

  • Torki M., Mandaron P., Mache R. & Falconet D. 2000. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 242: 427–436.

    Article  PubMed  CAS  Google Scholar 

  • van Pouderoyen G., Snijder H.J., Bennen J.A. & Dijkstra B.W. 2003. Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett. 554: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Van Rijssel M., Smidt M.P., van Kouwen G. & Hansen T. 1993. Involvement of an intracellular oligogalacturonate hydrolase in metabolism of pectin by Clostridium thermosacchrolyticum. Appl. Environ. Microbiol. 59: 837–842.

    PubMed  Google Scholar 

  • van Santen Y., Bennen J.A., Schroter K.H., Kalk K.H., Armand S., Visser J. & Dijkstra B.W. 1999. 1.68 Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J. Biol. Chem. 274: 30474–30480.

    Article  PubMed  Google Scholar 

  • Vincken J.P., Schols H.A., Oomen R.J., Beldman G., Visser R.G.F. & Voragen A.G.J. 2003a. Pectin — the hairy thing, pp. 47–50. In: Voragen A.G.J., Schols H.A. & Visser R.G.F. (eds), Advances in Pectin and Pectinase Research, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Vincken J.P., Schols H.A., Oomen R.J., McCann M.C., Ulvskov P., Voragen A.G.J. & Visser R.G.F. 2003b. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 132: 1781–1789.

    Article  PubMed  CAS  Google Scholar 

  • Voragen A.G.J., Pilnik W., Thibault J.F., Axelos M.A.V. & Renard C.M.G.C. 1995. Pectins, pp. 287–339. In: Stephen A.M. (ed.), Food Polysaccharides, Dekker, Inc., New York-Basel-Hong Kong.

    Google Scholar 

  • Wray W., Boulikas T., Wray V.P. & Hancock R. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118: 197–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Stratilová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flodrová, D., Garajová, S., Malovíková, A. et al. Oligogalacturonate hydrolase with unique substrate preference from the pulp of parsley roots. Biologia 64, 228–234 (2009). https://doi.org/10.2478/s11756-009-0038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0038-2

Key words

Navigation