Skip to main content

Advertisement

Log in

Coat protein-mediated resistance as an approach for controlling an Egyptian isolate of Cucumber mosaic virus (subgroup I)

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Cucumber mosaic virus (CMV, cucumovirus) is the most important virus infecting cucurbit crops in Egypt and worldwide causing significant loss in yield quality and quantity. The main target of the present work was to establish a simple controlling system for an Egyptian isolate of such virus (belonging to the subgroup I) via production of tobacco transgenic plants expressing viral coat protein (CP). Coat protein gene (cp) was isolated and amplified using immunocapture-reverse transcriptase-polymerase chain reaction (IC-RT-PCR) and primers with add-on restriction sites for SmaI and SacI enzymes. The genes were cloned in pBI121 vector plasmid between the CaMV 35S promoter and the nos terminator after removing the Gus gene by restriction enzymes digestion. The new construct was used for Agrobacterium tumefaciens transformation, which was then used for tobacco transformation. Evaluation of transformation success and CP expression degree were confirmed using indirect enzyme-linked immunosorbent assay (I-ELISA) and dot blot immuno-binding assay (DBIA). PCR and RT-PCR were used to study the integration of cp within genetic plant system and to what extent this gene was transcript. It was concluded that in spite of integration success some transformed plants can transcript the gene more than the others do. Plants resistance was tested by challenging with CMV under study and remarkable success was obtained in plants with higher gene transcription and translation degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

CMV:

Cucumber mosaic virus

CP:

coat protein

cp :

coat protein gene

DBIA:

dot blot immuno-binding assay

IC-RT-PCR:

immunocapture-reverse transcriptase-polymerase chain reaction

I-ELISA:

indirect-enzyme linked immunosorbent assay

PVX:

Potato virus X

PVY:

Potato virus Y

TE:

Tris-EDTA

TMV:

Tobacco mosaic virus

References

  • Aldrich J. & Cullis C.A. 1993. RAPD analysis in flax. Optimization of yield and reproducibility using KlenTaq 1 DNA polymerase, Chelex 100, and gel purification of genomic DNA. Plant Mol. Biol. Rep. 11: 128–141.

    Article  CAS  Google Scholar 

  • An G., Ebert P.R., Mitra A. & Ha S.B. 1988. Binary vectors, pp. 10–19. In: Gelvin S.B., Schilperoort R.A. & Verma D.P.S. (eds), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bendahmane M., Fitchen J.H., Zhang G. & Beachy R.N. 1997. Studies of coat protein-mediated resistance to Tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. J. Virol. 71: 7942–7950.

    PubMed  CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Wheeler D.L. 2007. GenBank. Nucleic Acids Res. 35 (Database Issue): D21–D25.

    Article  CAS  Google Scholar 

  • Brunt A., Crabtree K., Dallwitz M., Gibbs A. & Watson L. 1996. Viruses of Plants: Description and Lists from the VIDE Database.C.A.B. International, Wallingford, U.K., 1484 pp.

    Google Scholar 

  • Chapman S., Hills G.J., Watts J. & Baulcombe D. 1992. Mutational analysis of the coat protein gene of Potato virus X: effects of virion morphology and viral pathogenicity. Virology 191: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Clark W.G., Fitchen J.H. & Beachy R.N. 1995. Studies of coatprotein mediated resistance to TMV using mutant CP. I. The PM2 assembly defective mutant. Virology 208: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Cuozzo M., O’Connell K.M., Kaniewski W., Fang R.X., Chua N.H. & Tumer N.E. 1988. Viral protection in transgenic tobacco plants expressing the Cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6: 549–547.

    Article  CAS  Google Scholar 

  • Douine L., Quiot J.B., Marchoux G. & Archange P. 1979. Recensement de espèces végétales sensibles au virus de la mosaïique du concombre (CMV). Ann. Phytopathol. 11: 439–475.

    Google Scholar 

  • El-Afifi Sohair I., Abdel-Ghaffar M.H., El-Borollosy A.M. & Sadik A.S. 2005. Controlling of Tomato mosaic tobamovirus and Potato Y potyvirus (common strain) via coat protein-mediated resistance. Egyptian J. Virol. 2: 113–130.

    Google Scholar 

  • El-Afifi Sohair I., El-Borollosy A.M. & Mahmoud S.Y.M. 2007. Tobacco callus culture as a propagating medium for Cucumber mosaic cucumovirus. Int. J. Virol. 3: 73–79.

    Article  Google Scholar 

  • Foster G.D. & Taylor Sally C. 1998. Plant Virology Protocols: From Virus Isolation to Transgenic Resistance. Humana Press, New York, 571 pp.

    Google Scholar 

  • Fraser R.S.S. 1990. The genetics of resistance to plant viruses. Annu. Rev. Phytopathol. 28: 179–200.

    Article  Google Scholar 

  • Ghosh S.B., Nagi L.H.S., Ganapathi T.R., Paul Khurana S.M. & Bapat V.A. 2002. Cloning and sequencing of Potato virus Y coat protein gene from and Indian isolate and development of transgenic tobacco for PVY resistance. Curr. Sci. 82: 7–10.

    Google Scholar 

  • Grumet R. 1994. Development of virus resistance plant via genetic engineering. Plant Breed. Rev. 12: 47–79.

    Google Scholar 

  • Hemenway C., Fang R.X., Kaniewski W., Chua N.H. & Tumer N.E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the Potato virus X coat protein or its antisense RNA. EMBO J. 7: 1273–1280.

    PubMed  CAS  Google Scholar 

  • Hibi T. & Saito Y. 1985. A dot immunobinding assay for the detection of Tobacco mosaic virus in infected tissues. J. Gen. Virol. 66: 1191–1194.

    Article  Google Scholar 

  • Higgins C.M., Hall R.M., Mitter N., Cruickshank A. & Dietzgen R.G. 2004. Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res. 13: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Holsters M., De Waele D., Depicker A., Messens E., Van Montagu M. & Schell J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Horsch R.B., Fry J., Hoffman N.L., Neidermeyer J., Rogers S.G. & Fraley R.T. 1989. Leaf disc transformation, pp. 1–9. In: Gelvin S.B., Schilperoort R.A. & Verma D.P.S. (eds), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Johnson A.A.T. 2001. Effect of ploidy elevation, copy number and parent-of-origin on transgene expression in potato. Ph.D. Thesis, Virginia Polytechnic Institue & State University, Blacksburg, VA, USA.

    Google Scholar 

  • Kaniewski W.K., Lawson C., Sammons B., Haley L., Hart J., Delannay X. & Tumer N.E. 1990. Field resistance to transgenic Russet Burbank potato to effects of infection by Potato virus X and Potato virus Y. Bio/Technology 8: 750–754.

    Article  Google Scholar 

  • Koenig R.C. 1981. Indirect ELISA methods for broad specificity detection of plant viruses. J. Gen. Virol. 55: 53–62.

    Article  Google Scholar 

  • Lapidot M., Gafny R., Ding B., Wolf S., Lucas W.J. & Beachy R.N. 1993. A dysfunctional movement protein of Tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4: 959–970.

    Article  CAS  Google Scholar 

  • Lawson C., Kaniewski W., Haley L., Rozman R., Newell C., Sanders P. & Tumer N.E. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to Potato virus X and Potato virus Y in transgenic Russet Burbank. Bio/Technology 8: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Li X.Q., Stah R. & Brown G. 1995. Rapid micropreps and minipreps of Ti plasmids and binary vectors from Agrobacterium tumefaciens. Transgenic Res. 4: 349–351.

    Article  CAS  Google Scholar 

  • Loesch-Fries L.S., Merlo D., Zinnen T., Burhop L., Hill K., K. Krahn, Jarvis N., Nelson S. & Halk E. 1987. Expression of Alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6: 1845–1851.

    PubMed  CAS  Google Scholar 

  • Minafera A. & Hadidi A. 1994. Sensitive detection of grapevine virus A, B or leafroll associated III from viruleferous mealybugs and infected tissues by cDNA amplification. J. Virol. Methods 47: 175–188.

    Article  Google Scholar 

  • Nejidat A. & Beachy R.N. 1990. Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses. Mol. Plant Microbe Interact. 3: 247–251.

    PubMed  CAS  Google Scholar 

  • Pfitzner U.M. & Pfitzner A.J. 1992. Expression of a viral avirulence gene in transgenic plants is sufficient to induce the hypersensitive defense reaction. Mol. Plant Microbe Interact. 5: 318–321.

    PubMed  CAS  Google Scholar 

  • Powell-Abel P., Nelson R.S., De B., Hoffmann N., Rogers S.G., Fraley R.T. & Beachy R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 783–743.

    Article  Google Scholar 

  • Quemada H.D., Gonsalves D. & Slightom J.L. 1991. Expression of coat protein gene from Cucumber mosaic virus strain C in tobacco: protection against infection by CMV strain transmitted mechanically aphids. Phytopathology 81: 749–802.

    Article  Google Scholar 

  • Roossinck M.J. 1999. Cucumoviruses (Bromoviridae) — general features, pp. 315–320. In: Granoof L. & Webster R.G. (eds), Encyclopedia of Virology, 2nd Edition, Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Srivastava A. & Raj S.K. 2008. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana. J. Biosci. 33: 1–9.

    Article  Google Scholar 

  • Taschner P.E.M., Van Marle G., Brederode F.T., Tumer N.E. & Bol J.F. 1994. Plants transformed with a mutant Alfalfa mosaic virus coat protein gene are resistant to the mutant but not to wild-type virus. Virology 203: 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Trigiano R.N. & Gray D.J. 1996. Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press, New York, 454 pp.

    Google Scholar 

  • Verwoerd T.C., Dekker M.M. & Hoekema A. 1989. A small-scale procedure for the rapid isolation of plant RNA. Nucleic Acids Res. 17: 2362.

    Article  PubMed  CAS  Google Scholar 

  • Wieslander L. 1979. A simple method to recover high molecular weight RNA and DNA after electrophoresis separation in low gelling temperature agarose gels. Anal. Biochem. 98: 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Wintermantel W.M. & Zaitlin M. 2000. Transgene translatability increases effectiveness of replicase-mediated resistance to Cucumber mosaic virus. J. Gen. Virol. 81: 587–595.

    PubMed  CAS  Google Scholar 

  • Zibata A. 2001. Efficient transformation of Halobacterium salinarum by a “freeze and thaw” technique. Biotechniques 31: 1010–1012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. El-Borollosy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Borollosy, A.M., Mahmoud, S.Y.M. & Khaled, AS.G.A. Coat protein-mediated resistance as an approach for controlling an Egyptian isolate of Cucumber mosaic virus (subgroup I). Biologia 63, 610–615 (2008). https://doi.org/10.2478/s11756-008-0119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0119-7

Key words

Navigation