Skip to main content
Log in

Molecular cloning, characterization and expression of atpA and atpB genes from Ginkgo biloba

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The chloroplast ATP synthase (ATPase) utilizes the energy of a transmembrane electrochemical proton gradient to drive the synthesis of ATP from ADP and phosphate. The chloroplast ATPase α and β subunits are the essential components of multisubunit protein complex. In this paper, the full-length cDNA and genomic DNA of ATPase α (designated as GbatpA) and β (designated as GbatpB) subunit genes were isolated from Ginkgo biloba. The GbatpA and GbatpB genes were both intronless. The coding regions of GbatpA and GbatpB were 1530 bp and 1497 bp long, respectively, and their deduced amino acid sequences showed high degrees of identity to those of other plant ATPase α and β proteins, respectively. The expression analysis by RT-PCR revealed that GbatpA and GbatpB both expressed in tissue-specific manners in G. biloba and might involve in leaf development. The recombinant GbATPB protein was successfully expressed in E. coli strain using pET28a vector with ATPase activity as three times high as the control, and the results showed that the molecular weight of the recombinant protein was about 54 kDa, a size that was in agreement with that predicted by bioinformatics analysis. This study provides useful information for further studying on overall structure, function and regulation of the chloroplast ATPase in G. biloba, the so-called “living fossil” plant as one of the oldest gymnosperm species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATPase:

ATP synthase

CF0 :

coupling factor 0

CF1 :

coupling factor 1

H+-ATPase:

proton-translocating ATPase

IPTG:

isopropyl-β-D-thiogalactoside

PSI:

photosystem I

PSII:

photosystem II

RACE:

rapid amplification of cDNA ends

References

  • Abdallah F., Salamini F. & Leister D. 2000. A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci. 5: 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Avni A., Anderson J.D., Holland N., Rochaix J.D., Gromet-Elhanan Z. & Edelman M. 1992. Tentoxion sensitivity of chloroplasts determined by codon 83 of β subunit of proton-ATPase. Science 257: 1245–1247.

    Article  PubMed  CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Wheeler D.L. 2007. GenBank. Nucleic Acids Res. 35(Database issue): D21–D25.

    Article  PubMed  CAS  Google Scholar 

  • Boekema E.J. & Böttcher B. 1992. The structure of ATP synthase from chloroplasts: conformational changes of CF1 studied by electron microscopy. Biochim. Biophys. Acta 1098: 131–143.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z., Wu I., Richter M.L. & Gegenheimer P. 1992. Over-expression and refolding of β-subunit from the chloroplast ATP synthase. FEBS Lett. 298: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • de Boer A.D. & Weisbeek P.J. 1991. Chloroplast protein topogenesis: import, sorting, and assembly. Biochim. Biophys. Acta 1071: 221–253.

    Google Scholar 

  • Deno H., Shinozaki K. & Sugiura M. 1983. Nucleotide sequence of tobacco chloroplast gene for the α subunit of proton-translocating ATPase. Nucleic. Acids Res. 11: 2185–2191.

    Article  PubMed  CAS  Google Scholar 

  • Dever T.E., Glynias M.J. & Merrick W.C. 1987. GTP-binding domain: three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. USA 84: 1814–1818.

    Article  PubMed  CAS  Google Scholar 

  • Drapier D., Girard-Bascou J. & Wollman F. 1992. Evidence for nuclear control of the expression of the atpA and atpB chloroplast genes in chiamydomonas. Plant Cell 4: 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fromme P., Boekema E.J. & Gräber P. 1987. Isolation and characterization of a supramolecular complex of subunit III of the ATP synthase from chloroplasts. Z. Naturforsch. 42c: 1239–1245.

    Google Scholar 

  • Fry D.C., Kuby S.A. & Mildvan A.S. 1986. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 83: 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Futai M., Noumi T. & Maeda M. 1989. ATP synthase (H+-ATPase): result by combined biochemical and molecular biological approaches. Annu. Rev. Biochem. 58: 111–136.

    Article  PubMed  CAS  Google Scholar 

  • Gogarten J.P., Starke T., Kibak H., Fishman J. & Taiz L. 1992. Evolution and isoforms of V-ATPase subunits. J. Exp. Biol. 172: 137–147.

    PubMed  CAS  Google Scholar 

  • Green C.D. & Hollingsworth M.J. 1994. Tissue specific expression of the large ATP synthase gene cluster in spinach plastids. Plant Mol. Biol. 25: 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Groth G. & Strotmann H. 1999. New results about structure, function and regulation of the chloroplast ATP synthase (CF0CF1). Physiol. Plant. 106: 142–148.

    Article  CAS  Google Scholar 

  • Groth G. & Pohl E. 2001. The structure of the chloroplast F1-ATPase at 3.2? resolution. J. Biol. Chem. 276: 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  • Jang L. & Cai L.H. 2000. A method for extracting DNA of Ginkgo biloba. Plant Physiol. Commun. 36: 340–342.

    Google Scholar 

  • Komine Y., Kwong L., Anguera M.C., Schuster G. & Stern D.B. 2000. Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhardtii. RNA 6: 598–607.

    Article  PubMed  CAS  Google Scholar 

  • Kramer D.M., Cruz J.A. & Kanazawa A. 2003. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 8: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Kudla J., Hayes R. & Gruissem W. 1996. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 15: 7137–7146.

    PubMed  CAS  Google Scholar 

  • Kumar A. & Ellis B.E. 2001. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol. 127: 230–299.

    Article  PubMed  CAS  Google Scholar 

  • Leebens-Mack J., Raubeson L.A., Cui L., Kuehl J.V., Fourcade M.H., Chumley T.W., Boore J.L., Jansen R.K. & dePamphilis C.W. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol. Biol. Evol. 22: 1948–1963.

    Article  PubMed  CAS  Google Scholar 

  • Levva J.A. Bianchet M.A. & Amzel M. 2003. Understanding ATP synthesis: structure and mechanism of the F1-ATPase. Mol. Membr. Biol. 20: 27–33.

    Article  Google Scholar 

  • Li W., Fan J., Zhao N. & Liu J. 2001. cDNA cloning, sequencing andcharacterization of radish chloroplast ATPase beta subunit. Journal of Tsinghua University (Science and Technology) 41: 36–40. (in Chinese)

    CAS  Google Scholar 

  • Liao Z.H., Chen M., Guo L., Gong Y.F., Tang F., Sun X.F. & Tang K.X. 2004. Rapid isolation of high-quality total RNA from Taxus and Ginkgo. Prep. Biochem. Biotechnol. 34: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Lisitsky I., Klaff P. & Schuster G. 1996. Addition of destabilizing poly(A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc. Natl. Acad. Sci. USA 93: 13398–13403.

    Article  PubMed  CAS  Google Scholar 

  • Maier R.M., Neckermann K., Igloi G.L. & Kossel H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251: 614–628.

    Article  PubMed  CAS  Google Scholar 

  • Maiwald D., Dietzmann A., Jahns P., Pesaresi P., Joliot P., Joliot A., Levin J.Z., Salamini F. & Leister D. 2003. Knock-out of the genes coding for the rieske protein and the ATP-synthase δ-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. Plant Physiol. 133: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Moller W. & Amons R. 1985. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Muller P., Li X.P. & Niyogi K.K. 2001. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 125: 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Nelson N. 1992. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100: 109–124.

    Article  PubMed  CAS  Google Scholar 

  • Nickrent D.L., Parkinson C.L., Palmer J.D. & Duff R.J. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 17: 1885–1895.

    PubMed  CAS  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Saraste M., Sibbald P.R. & Wittinghofer A. 1990. The P-loop — a common motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15: 430–434.

    Article  PubMed  Google Scholar 

  • Savolainen V., Chase M.W., Hoot S.B., Morton C.M., Soltis D.E., Bayer C., Fay M.F., de Bruijin A.Y., Sullivan S. & Qiu Y.L. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306–362.

    Article  PubMed  CAS  Google Scholar 

  • Schuettpelz E., Korall P. & Pryer K.M. 2006. Plastid atpA data provide improved support for deep relationships among ferns. Taxon 55: 897–906.

    Google Scholar 

  • Shi Q.H., Li M.Y., Xu J.B. & Tan X.M. 2006. Effects of high temperature stress on ATPase activity of plasma membrane and NH +4 absorption rate in roots of early rice. Acta Agronomica Sinica 32: 1044–1048. (in Chinese)

    CAS  Google Scholar 

  • Stock D., Leslie A.G. & Walker J.E. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705.

    Article  PubMed  CAS  Google Scholar 

  • Tang J., Xia H., Cao M., Zhang X., Zeng W., Hu S., Tong W., Wang J., Wang J., Yu J., Yang H. & Zhu L. 2004. A comparison of rice chloroplast genomes. Plant Physiol. 135: 412–420.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 2876–4882.

    Article  Google Scholar 

  • van Walraven H.S, Lutter R & Walker J.E. 1993. Organization and sequence of genes for the subunits of ATP synthase in the thermophilic cyanobacterium Synechococcus 6716. Biochem. J. 294: 239–251.

    PubMed  Google Scholar 

  • Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T. & Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. USA 91: 9794–9798.

    Article  PubMed  CAS  Google Scholar 

  • Walker J.E., Saraste M. Runswick M.J. & Gay N.J. 1982. Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945–951.

    PubMed  CAS  Google Scholar 

  • Woessner J.P., Masson A., Harrls E.H., Bennoun P., Gillham N.W. & Boynton J.E. 1984. Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol. Biol. 3: 177–190.

    Article  CAS  Google Scholar 

  • Wolf P.G., Karol K.G., Mandoli D.F., Kuehl J., Arumuganathan K., Ellis M.W, Mishler D.D, Kelch D.G., Olmstead R.G & Boore J.L. 2005. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G., Bottomley W. & Whitfeld P.R. 1982. Structures of the genes for the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc. Natl. Acad. Sci. USA 79: 6260–6264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-yuan Cheng.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Cai, R., Cheng, Sy. et al. Molecular cloning, characterization and expression of atpA and atpB genes from Ginkgo biloba . Biologia 63, 526–534 (2008). https://doi.org/10.2478/s11756-008-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0093-0

Key words

Navigation