Skip to main content
Log in

Characterization of two partially purified xyloglucan endotransglycosylases from parsley (Petroselinum crispum) roots

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Two forms of xyloglucan endotransglycosylase differing in isoelectric points were isolated from the protein mixture obtained from parsley roots and partially characterized. Both forms were glycoproteins differing in their specific activities but other features were almost the same. Activity and stability of both enzymes in broad pH region were observed with two pH optima, one at acidic pH (5.8) and the second one at basic pH (8.8). The enzymes behaved as typical transglycosylases since no activity was observed in the absence of xyloglucan oligosaccharides in the viscometric assay. Small hetero-transglycosylating activities were observed when hydroxyethyl-or carboxymethyl-celluloses instead of xyloglucan as donor substrate were used as well as when cello-oligosaccharides instead of xyloglucan oligosaccharides were used as the acceptor substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

Na-carboxymethylcellulose

HEC:

hydroxyethylcellulose

IEF:

isoelectric focusing

LAOs:

laminari-oligosaccharides

SR:

sulforhodamine

XEH:

xyloglucan endohydrolase

XET:

xyloglucan endotransglycosylase

XG:

xyloglucan

XGOs:

XG-derived oligosaccharides

XTH:

xyloglucan endotransglycosylase/hydrolase

References

  • Ait Mohand F. & Farkaš V. 2006. Screening for heterotransglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydr. Res. 341: 577–581.

    Article  CAS  Google Scholar 

  • Baumann M.J., Eklöf J.M., Michel G., Kallas A.M., Teeri T.T., Czjzek M. & Brumer H. III. 2007. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19: 1947–1963.

    Article  PubMed  CAS  Google Scholar 

  • Bourquin V., Nishikubo N., Abe H., Brumer H., Denman S., Eklund M., Christiernin M., Teeri T.T., Sundberg B. & Mellerowicz E.J. 2002. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14: 3073–3088.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz K., Rapp P. & Zadrazil F. 1984. Cellulases, pp. 178–188. In: Bergmayer H.U., Bergmayer J. & Grassl M. (eds) Methods of Enzymatic Analysis, Vol. 4, Verlag Chemie, Weinheim.

    Google Scholar 

  • Chanliaud E., Burrows K.M., Jeronimidis G. & Gidley M.J. 2002. Mechanical properties of primary plant cell wall analogues. Planta 215: 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Coutinho P.M. & Henrissat B. 1999. Carbohydrate-active enzymes: an integrated database approach, pp. 3–12. In Gilbert H.J., Davies G., Henrissat B. & Svensson B. (eds) Recent Advances in Carbohydrate Bioengineering, The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • De Silva J., Jarman C.D., Arrowsmith D., Stronach M.S., Chengappa S., Sidebottom C. & Grant Reid J.S. 1993. Molecular characterization of a xyloglucan-specific endo-(1–4)-β-d-glucanase (xyloglucan endotransglycosylase) from nasturtiun seeds. Plant J. 3: 701–711.

    Article  PubMed  Google Scholar 

  • Edwards M., Dea I.C.M., Bulpin P.V. & Reid J.S.G. 1986. Purification and properties of a novel xyloglucan-specific endo(1→4)-β-d-glucanase from germinated nasturtium seeds (Tropaeolum majus). J. Biol. Chem. 261: 9489–9494.

    PubMed  CAS  Google Scholar 

  • Fanutti C., Gidley M.J. & Reid J.S.G. 1993. Action of a pure xyloglucan endo-transglycoylase (formerly called xyloglucan-specific endo-(1→4)-β-D-glucanase) from the cotyledons of germinated nasturtinum seeds. Plant J. 3: 691–700.

    Article  PubMed  CAS  Google Scholar 

  • Fannutti C., Gidley M.J. & Reid J.S. 1996. Substrate subsite recognition of the xyloglucan endo-transglycosylase or xyloglucan-specific endo-(1→4)-beta-D-glucanase from the cotyledons of germinated nasturtium (Tropaeolum majus L.) seeds. Planta 200: 221–228.

    Article  Google Scholar 

  • Farkaš V., Sulová Z., Stratilová E., Hanna R. & Maclachlan G. 1992. Cleavage of xyloglucan by nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch. Biochem. Biophys. 298: 365–370.

    Article  PubMed  Google Scholar 

  • Farkaš V., Ait-Mohand F. & Stratilová E. 2005. Sensitive detection of transglycosylating activity of xyloglucan endotransglycosylase/hydrolase (XTH) after isoelectric focusing in polyacrylamide gels. Plant Physiol. Biochem. 43: 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroňko M., Stach T., Capek P. & Farkaš V. 1998. Electrosynthesis of oligosaccharide glycamines. Carbohydr. Res. 306: 457–461.

    Article  Google Scholar 

  • Fry S.C. 1997. Novel “dot-blot” assays for glycosyltransferases and glycosylhydrolases: optimisation for xyloglucan endotransglycosylase (XET) activity. Plant J. 11: 1141–1150.

    Article  CAS  Google Scholar 

  • Fry S.C. 2004. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytologist 161: 641–675.

    Article  CAS  Google Scholar 

  • Fry S.C., Smith R.C., Renwick K.F., Martin D.J., Hodge S.K. & Mathews K.J. 1992. Xyloglucan endotransglycosylase: a new wall-loosening enzyme activity from plants. Biochem. J. 282: 821–826.

    PubMed  CAS  Google Scholar 

  • Geisler-Lee J., Geisler M., Coutinho P.M., Segerman B., Nishikubo N., Takahashi J., Aspeborg H., Djerbi S., Master E., Andersson-Gunneras S., Sundberg B., Karpinski S., Teeri T.T., Kleczkowski L.A., Henrissat B. & Mellerowicz E.J. 2006. Poplar carbohydrate-active enzymes. Gene identification and expression analysis. Plant Physiol. 140: 946–962.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T. 1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168.

    Article  CAS  Google Scholar 

  • Hrmová M., Farkaš V., Lahnstein J. & Fincher G.B. 2007. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-d-glucans. J. Biol. Chem. 282: 12951–12962.

    Article  PubMed  Google Scholar 

  • Kallas A.M., Piens K., Denman S.E., Henriksson H., Fäldt J., Johansson P., Brumer H. & Teeri T.T. 2005. Enzymatic properties of native and deglycosylated hybrid aspen (Populus tremula × tremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem. J. 390: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Kosík O. & Farkaš V. 2008. One-pot fluorescent labeling of xyloglucan oligosaccharides with sulforhodamine. Anal. Biochem. 375: 232–236.

    Article  PubMed  CAS  Google Scholar 

  • McCann M.J., Wells B. & Roberts K. 1990. Direct visualization of cross-links in the primary cell wall. J. Cell Sci. 96: 323–334.

    Google Scholar 

  • Purugganan M.M., Braam J. & Fry S.C. 1997. The Arabidopsis TCH4 xyloglucan endotransglycosylase: substrate specificity, pH optimum, and cold tolerance. Plant Physiol. 115: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Rose J.K. & Bennett A.B. 1999. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4: 176–183.

    Article  PubMed  Google Scholar 

  • Rose J.K., Braam S.C., Fry S.C. & Nishitani K. 2002. The XTH family of enzymes involved in xyloglucan endotransglycosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.

    Article  PubMed  CAS  Google Scholar 

  • Saladie M., Rose J.K.C., Cosgrove D. & Catalá C. 2006. Characterization of a new xyloglucan endotransglycosylase/hydrolase (XTH) from ripering tomato fruit and implications for the diverse modes of enzymic action. Plant J. 47: 282–295.

    Article  PubMed  CAS  Google Scholar 

  • Saura-Valls M., Faure R., Ragas S., Piens K., Brumer H., Teeri T.T., Cottaz S., Driguez H. & Planas A. 2006. Kinetic analysis using low molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase. Biochem. J. 395: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Schröder R., Atkinson R.G., Langenkamper G. & Redgwell R.J. 1998. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta 204: 242–251.

    Article  PubMed  Google Scholar 

  • Sinnott M.L. 1990. Catalytic mechanism of enzymatic glycosyl transfer. Chem. Rev. 90: 1171–1202.

    Article  CAS  Google Scholar 

  • Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19–23.

    CAS  Google Scholar 

  • Steele N.M. & Fry S.C. 2000. Differences in catalytic properties between native isoenzymes of xyloglucan endotransglycosylase (XET). Phytochemistry 54: 667–680.

    Article  PubMed  CAS  Google Scholar 

  • Steele N.M., Sulová Z., Campbell P., Braam J., Farkaš V. & Fry S.C. 2001. Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochem. J. 355: 671–679.

    PubMed  CAS  Google Scholar 

  • Sulová Z., Baran R. & Farkaš V. 2001. Release of complexed xyloglucan endotransglycosylase (XET) from plant cell walls by a transglycosylation reaction with xyloglucan-derived oligosaccharides. Plant Physiol. Biochem. 39: 927–932.

    Article  Google Scholar 

  • Sulová Z., Baran R. & Farkaš V. 2003. Divergent modes of action on xyloglucan of two isoenzymes of xyloglucan endotransglycosylase from Tropaeolum majus. Plant Physiol. Biochem. 41: 431–437.

    Article  CAS  Google Scholar 

  • Sulová Z., Lednická M. & Farkaš V. 1995. A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Anal. Biochem. 229: 80–85.

    Article  PubMed  Google Scholar 

  • Sulová Z., Takáčová M., Steele N.M., Fry S.C. & Farkaš V. 1998. Xyloglucan endotransglycosylase: Evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochem. J. 330: 1475–1480.

    PubMed  Google Scholar 

  • Tabuchi A., Mori H., Kamisaka S. & Hoson T. 2001. A new type of endoxyloglucan transferase devoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls. Plant Cell Physiol. 42: 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Van Sandt V.S.T., Guisez Y., Verbelen J.P. & Vissenberg K. 2006. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) from the lycopodiophyte Selaginella kraussiana suggests that XTH sequence characteristics and function are highly conserved during the evolution of vascular plants. J. Exp. Bot. 57: 2909–2922.

    Article  PubMed  Google Scholar 

  • Wilzbach K.E. 1957. Tritium labeling by exposure of organic compounds to tritium gas. J. Am. Chem. Soc. 79: 1013.

    Article  CAS  Google Scholar 

  • Vissenberg K., Martinez-Vilchez I.M., Verbelen J.P., Miller J.G. & Fry S.C. 2000. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12: 1229–1238.

    Article  PubMed  CAS  Google Scholar 

  • Vissenberg K., Van Sandt V., Fry S.C. & Verbelen J.P. 2003. Xyloglucan endotransglycosylase action is high in the root elongation zone and in the trichoblast of all vascular plants from Selaginella to Zea mays. J. Exp. Bot. 54: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrom M.L. & Thompson A. 1963. Acetolysis. Polymerhomologous series of oligosaccharides from cellulose; their alditols and anomeric acetates, pp. 143–150. In: Whistler R.L., Green J.W., BeMiller J.N. & Wolfrom M.L. (eds) Methods in Carbohydrate Chemistry, Vol. 3, Academic Press, New York and London.

    Google Scholar 

  • Yokoyama R. & Nishitani K. 2001. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to a predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol. 42: 1025–1033.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R., Rose J.K.C. & Nishitani K. 2004. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol. 134: 1088–1099.

    Article  PubMed  CAS  Google Scholar 

  • York W.S. & Hawkins R. 2000. Preparation of oligomeric β-glycosides from cellulose and hemicellulosic polysaccharides via the glycosyl transferase activity of a Trichoderma reesei cellulase. Glycobiology 10: 193–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garajová, S., Flodrová, D., Ait-Mohand, F. et al. Characterization of two partially purified xyloglucan endotransglycosylases from parsley (Petroselinum crispum) roots. Biologia 63, 313–319 (2008). https://doi.org/10.2478/s11756-008-0067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0067-2

Key words

Navigation