Skip to main content
Log in

Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two new endo-1,4-beta-xylanases encoding genes EpXyn1 and EpXyn3 were isolated from mesophilic fungus Eupenicillium parvum 4–14. Based on analysis of catalytic domain and phylogenetic trees, the xylanases EpXYN1 (404 aa) and EpXYN3 (220 aa) belong to glycoside hydrolase (GH) family 10 and 11, respectively. Both EpXYN1 and EpXYN3 were successfully expressed in Pichia pastoris and the recombinant enzymes were characterized using beechwood xylan, birchwood xylan, or oat spelt xylan as substrates, respectively. The optimum temperatures and pH values were 75 °C and 5.5 for EpXYN1, and 55 °C and 5.0 for EpXYN3. EpXYN1 exhibited a high stability at high temperature (65 °C) or at pH values from 8 to 10. EpXYN3 kept over 80% enzymatic activity after treatment at pH values from 3 to 10. The specific activities of EpXYN1 and EpXYN3 were 384.42 and 214.20 U/mg using beechwood xylan as substrate, respectively. EpXYN1 showed lower Km values and higher specific activities toward different xylans compared to EpXYN3. Thin-layer chromatography analysis indicated that the hydrolysis profiles of xylans or xylo-oligosacharides were different by EpXYN1and EpXYN3. EpXYN3 had a higher efficiency than EpXYN1 in production of feruloylated oligosaccharides (FOs) from de-starched wheat bran. The maximum levels of FOs released by EpXYN1 and EpXYN3 were 11.1 and 14.4 μmol/g, respectively. In conclusion, the two xylanases are potential candidates for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peng, F., Peng, P., Xu, F., & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30(4), 879–903.

    Article  CAS  Google Scholar 

  2. Liu, J., Chinga-Carrasco, G., Cheng, F., Xu, W., Willför, S., Syverud, K., & Xu, C. (2016). Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 23(5), 3129–3143.

    Article  CAS  Google Scholar 

  3. Li, H., Wu, H., Jiang, F., Wu, J., Xue, Y., Gan, L., Liu, J., & Long, M. (2018). Heterologous expression and characterization of an acidic GH11 family xylanase from Hypocrea orientalis. Applied Biochemistry and Biotechnology, 184, 228–238.

    Article  CAS  Google Scholar 

  4. Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A critical review on hemicellulose pyrolysis. Energy Technology, 5(1), 52–79.

    Article  CAS  Google Scholar 

  5. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3–23.

    Article  CAS  Google Scholar 

  6. Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P. L., & Srivastava, A. K. (2016). Bacterial xylanases: Biology to biotechnology. 3 Biotech, 6(2), 150.

    Article  Google Scholar 

  7. Liao, H., Zheng, H., Li, S., Wei, Z., Mei, X., Ma, H., Shen, Q., & Xu, Y. (2015). Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Scientific Reports, 5,12631.

    Article  CAS  Google Scholar 

  8. Juodeikiene, G., Basinskiene, L., Vidmantiene, D., Makaravicius, T., & Bartkiene, E. (2012). Benefits of β-xylanase for wheat biomass conversion to bioethanol. Journal of the Science of Food and Agriculture, 92(1), 84–91.

    Article  CAS  Google Scholar 

  9. Murugesan, G. R., & Persia, M. E. (2015). Influence of a direct-fed microbial and xylanase enzyme on the dietary energy uptake efficiency and performance of broiler chickens. Journal of the Science of Food and Agriculture, 95(12), 2521–2527.

    Article  CAS  Google Scholar 

  10. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances, 30(6), 1219–1227.

    Article  CAS  Google Scholar 

  11. Chutani, P., & Sharma, K. K. (2015). Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydrate Polymers, 127, 54–63.

    Article  CAS  Google Scholar 

  12. Zhang, H.-M., Wang, J.-Q., Wu, M.-C., Gao, S.-J., Li, J.-F., & Yang, Y.-J. (2014). Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. Journal of the Science of Food and Agriculture, 94(4), 699–706.

    Article  CAS  Google Scholar 

  13. Morgan, N. K., Wallace, A., Bedford, M. R., & Choct, M. A. (2017). Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydrate Polymers, 167, 290–296.

    Article  CAS  Google Scholar 

  14. Miao, Y., Li, P., Li, G., Liu, D., Druzhinina, I. S., Kubicek, C. P., Shen, Q., & Zhang, R. (2017). Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi. Environmental Microbiology, 19(3), 1054–1064.

    Article  CAS  Google Scholar 

  15. Meng, D.-D., Ying, Y., Chen, X.-H., Lu, M., Ning, K., Wang, L.-S., & Li, F.-L. (2015). Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Applied and Environmental Microbiology, 81(6), 2006–2014.

    Article  CAS  Google Scholar 

  16. Tang, F., Chen, D., Yu, B., Luo, Y., Zheng, P., Mao, X., Yu, J., & He, J. (2017). Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. Electronic Journal of Biotechnology, 26, 52–59.

    Article  CAS  Google Scholar 

  17. Kumar, V., Marín-Navarro, J., & Shukla, P. (2016). Thermostable microbial xylanases for pulp and paper industries: Trends, applications and further perspectives. World Journal of Microbiology and Biotechnology, 32(2), 34.

    Article  Google Scholar 

  18. Du, Y., Shi, P., Huang, H., Zhang, X., Luo, H., Wang, Y. R., & Yao, B. (2013). Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresource Technology, 130, 161–167.

    Article  CAS  Google Scholar 

  19. Silva, S. B., Pinheiro, M. P., Fuzo, C. A., Silva, S. R., Ferreira, T. L., Lourenzoni, M. R., Nonato, M. C., Vieira, D. S., & Ward, R. J. (2017). The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis. International Journal of Biological Macromolecules, 97, 574–584.

    Article  CAS  Google Scholar 

  20. Gopalan, N., Rodriguez-Duran, L. V., Saucedo-Castaneda, G., & Nampoothiri, K. M. (2015). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresource Technology, 193, 534–544.

    Article  CAS  Google Scholar 

  21. Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86–93.

    Article  CAS  Google Scholar 

  22. Uraji, M., Arima, J., Inoue, Y., Harazono, K., & Hatanaka, T. (2014). Application of two newly identified and characterized feruloyl esterases from Streptomyces sp. in the enzymatic production of ferulic acid from agricultural biomass. PLoS One, 9(8), e104584.

    Article  Google Scholar 

  23. Lapierre, C., Pollet, B., Ralet, M.-C., & Saulnier, L. (2001). The phenolic fraction of maize bran: Evidence for lignin-heteroxylan association. Phytochemistry, 57(5), 765–772.

    Article  CAS  Google Scholar 

  24. Ou, J., & Sun, Z. (2014). Feruloylated oligosaccharides: Structure, metabolism and function. Journal of Functional Foods, 7, 90–100.

    Article  CAS  Google Scholar 

  25. Xie, C., Wu, Z., Guo, H., & Gu, Z. (2014). Release of feruloylated oligosaccharides from wheat bran through submerged fermentation by edible mushrooms. Journal of Basic Microbiology, 54(S1), S14–S20.

    Article  CAS  Google Scholar 

  26. Katapodis, P., & Christakopoulos, P. (2008). Enzymic production of feruloyl xylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus. Lwt-Food Science and Technology, 41(7), 1239–1243.

    Article  CAS  Google Scholar 

  27. Long, L., Ding, D., Han, Z., Zhao, H., Lin, Q., & Ding, S. (2016). Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4-14 display high efficiency upon release of ferulic acid from wheat bran. Journal of Applied Microbiology, 121(2), 422–434.

    Article  CAS  Google Scholar 

  28. Zheng, F., Huang, J., Liu, X., Hu, H., Long, L., Chen, K., & Ding, S. (2016). N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance. Applied Microbiology and Biotechnology, 10, 3555–3565.

    Article  Google Scholar 

  29. Turner, B. L. (2010). Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology, 76(19), 6485–6493.

    Article  CAS  Google Scholar 

  30. Mi, S., Jia, X., Wang, J., Qiao, W., Peng, X., & Han, Y. (2014). Biochemical characterization of two thermostable xylanolytic enzymes encoded by a gene cluster of Caldicellulosiruptor owensensis. PLoS One, 9(8), e105264.

    Article  Google Scholar 

  31. Amel, B.-D., Nawel, B., Khelifa, B., Mohammed, G., Manon, J., Salima, K.-G., Farida, N., Hocine, H., Bernard, O., Jean-Luc, C., & Marie-Laure, F. (2016). Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T. Carbohydrate Research, 419, 60–68.

    Article  CAS  Google Scholar 

  32. Liao, H., Sun, S., Wang, P., Bi, W., Tan, S., Wei, Z., Mei, X., Liu, D., Raza, W., Shen, Q., & Xu, Y. (2014). A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: Cloning, purification, and insights into the influence of metal ions on xylanase activity. Journal of Industrial Microbiology and Biotechnology, 41(7), 1071–1083.

    Article  CAS  Google Scholar 

  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  34. Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324.

    Article  CAS  Google Scholar 

  35. Shibata, N., Suetsugu, M., Kakeshita, H., Igarashi, K., Hagihara, H., & Takimura, Y. (2017). A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase. Biotechnology for Biofuels, 10(1), 278.

    Article  Google Scholar 

  36. Miao, Y., Kong, Y., Li, P., Li, G., Liu, D., Shen, Q., & Zhang, R. (2018). Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. AMB Express, 8(1), 44.

    Article  Google Scholar 

  37. Rattanaporn, K., Tantayotai, P., Phusantisampan, T., Pornwongthong, P., & Sriariyanun, M. (2018). Organic acid pretreatment of oil palm trunk: Effect on enzymatic saccharification and ethanol production. Bioprocess and Biosystems Engineering, 41(4), 467–477.

    Article  CAS  Google Scholar 

  38. Yuan, L., Scanlon, M. G., Eskin, N. A., Thiyam-Hollander, U., & Aachary, A. A. (2015). Effect of pretreatments and endo-1,4-β-xylanase hydrolysis of canola meal and mustard bran for production of oligosaccharides. Applied Biochemistry and Biotechnology, 175(1), 194–208.

    Article  CAS  Google Scholar 

  39. He, J., Chen, D., Yu, B., & Zhang, K. (2010). Optimization of the Trichoderma reesei endo-1,4-beta-xylanase production by recombinant Pichia pastoris. Biochemical Engineering Journal, 52(1), 1–6.

    Article  CAS  Google Scholar 

  40. Maitan-Alfenas, G. P., Oliveira, M. B., Nagemc, R. A. P., de Vries, R. P., & Guimarães, V. M. (2016). Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans. International Journal of Biological Macromolecules, 91, 60–67.

    Article  CAS  Google Scholar 

  41. Kumar, V., Dangi, A. K., & Shukla, P. (2018). Engineering thermostable microbial xylanases toward its industrial applications. Molecular Biotechnology, 60(3), 226–235.

    Article  CAS  Google Scholar 

  42. Ma, R., Bai, Y., Huang, H., Luo, H., Chen, S., Fan, Y., Cai, L., & Yao, B. (2017). Utility of thermostable xylanases of Mycothermus thermophilus in generating prebiotic xylooligosaccharides. Journal of Agricultural and Food Chemistry, 65(6), 1139–1145.

    Article  CAS  Google Scholar 

  43. Beaugrand, J., Chambat, G., Wong, V. W. K., Goubet, F., Rémond, C., Paës, G., Benamrouche, S., Debeire, P., O'Donohue, M., & Chabbert, B. (2004). Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydrate Research, 339(15), 2529–2540.

    Article  CAS  Google Scholar 

  44. Chesson, A., Gardner, P. T., & Wood, T. J. (1997). Cell wall porosity and available surface area of wheat straw and wheat grain fractions. Journal of the Science of Food and Agriculture, 75(3), 289–295.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from a 948 Research Project (No. 2013-4-16) from State Forestry Administration of China, the Natural Science Fund for Provincial Colleges and University of Jiangsu Province, China (15KJB220003), the Research Fund for the Advanced Talents, Nanjing Forestry University (GXL201311), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., Xu, M., Shi, Y. et al. Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Appl Biochem Biotechnol 186, 816–833 (2018). https://doi.org/10.1007/s12010-018-2775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2775-6

Keywords

Navigation