Skip to main content
Log in

Effects of NaCl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated Na and declined in K, Ca and Mg contents. Na/K ratio increased steadily as a function of external NaCl treatment. NaCl induced significant differences in quality and quantity of proteins, whereas, proline accumulation remained more or less constant with treatment. NaCl stress enhanced the activity of superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7). Further in the isoenzyme studies, four SOD isoenzymes (SOD 1, 2, 3, and 4) and two POX isoenzymes (POX 1 and 2) were detected with the treatment. NaCl strongly induced activity of SOD 4 isoenzyme in 40, 60, 80 mM and POX 2 isoenzyme in 40 and 80 mM NaCl concentrations. Increase in antioxidant enzymes activity could be a response to cellular damage induced by NaCl. This increase could not stop the deleterious effects of NaCl, but it reduced stress severity and thus allowed cell growth to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apse M.P., Aharon G.S., Snedden W.A. & Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 256–1258.

    Article  Google Scholar 

  • Bajji M., Kinet J.M. & Lutts S. 1998. Salt stress on roots and leaves of Atriplex halimus L. and their corresponding callus culture. Plant Sci. 137: 131–142.

    Article  CAS  Google Scholar 

  • Bates L.R., Waldren R.P. & Teare I.D. 1973. A rapid determination of free proline for water stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp C.O. & Fridovich I. 1971. Superoxide dismutase; improved assays and an assay applicable to acrylamide gels. Ann. Biochem. 44: 276–287.

    Article  CAS  Google Scholar 

  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cherian S. & Reddy M.P. 2003. Evaluation of NaCl tolerance in callus cultures of Suaeda nudiflora Moq. Biol. Plant. 46: 193–198.

    Article  CAS  Google Scholar 

  • Cramer G.R., Lauchli A. & Polito A. 1985. Displacement of Ca by Na from the plasmalemma of root cells. A primary response to salt stress. Plant Physiol. 79: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Damerval C., Le Guilloux M., Blaisonneau J. & de Vienne D. 1987. A simplification of Heukeshoven and Dernick’s silver staining of proteins. Electrophoresis 8: 158–159

    Article  CAS  Google Scholar 

  • Elkahoui S., Hernandez J.A., Abdelly C., Ghrir R. & Limam F. 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci. 168: 607–613.

    Article  CAS  Google Scholar 

  • Lacerda C.F., Cambraia J., Cano M.A.O. & Ruiz H.A. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes under NaCl stress. Rev. Bras. Fisiol. Veg. 13: 270–284.

    Article  Google Scholar 

  • Francis G., Edinger R. & Becker K. 2005. A concept for simultaneous wasteland reclamation, fuel production, and socioeconomic development in degraded areas in India. Need, potential and perspectives of Jatropha plantations. Nat. Resources Forum 29: 12–24.

    Article  Google Scholar 

  • Giannopolitis C.N. & Ries S.K. 1977. Superoxide dismutase occurrence in higher plants. Plant Physiol. 59: 309–314.

    PubMed  CAS  Google Scholar 

  • Gulati A. 1989. Enzyme activity and isoenzyme patterns of Coccinia grandis in relation to sex expression. Curr. Sci. 58: 64–68.

    CAS  Google Scholar 

  • Hall J.L. & Flowers T.J. 1973. The effect of salt on protein synthesis in the halophytes Suaeda maritime. Planta 110: 361–368.

    Article  CAS  Google Scholar 

  • Hernandez J.A., Jimenez A., Mullineaux P.M. & Sevilla F. 2000. Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 23: 853–862.

    Article  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Maggio A., Reddy M.P. & Joly R.J. 2000. Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ. Exp. Bot. 44: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • McCoy T.J. 1987. Tissue culture evaluation of NaCl tolerance in Medicago sativa species: cellular versus whole plant response. Plant Cell Rep. 6: 31–34.

    Article  CAS  Google Scholar 

  • Meloni D.A. Gulotta M.R., Martinez, C.A. & Olive M.A. 2004. The effect of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz. J. Plant Physiol. 16: 39–46.

    Article  CAS  Google Scholar 

  • Misra H.P. & Fridovich I. 1977. Superoxide dismutase and peroxidase: A positive activity stain applicable to polyacrylamide gel electropherograms. Arch. Biochem. Biophys. 183: 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T. & Skoog F.A. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Niknam V., Razavi N., Ebrahimzadeh H. & Sharifizadeh B. 2006. Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedling and calli of two Trigonella species. Biol. Plant. 50: 591–596.

    Article  CAS  Google Scholar 

  • Petrusa L.M. & Winicov I. 1997. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 35: 303–310.

    CAS  Google Scholar 

  • Piqueras A., Hernandez J.A., Olmos E., Hellin E. & Sevilla F. 1996. Changes in antioxidant (CT) enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tiss. Org. Culture 45: 53–60.

    Article  CAS  Google Scholar 

  • Reddy M.P. & Iyengar E.R.R. 1999. Crop responses to salt stress: Seawater application and prospects, pp. 1041–1068. In: Pessarakli M.M. (ed.), Handbook of Plant and Crop Stress. Marcel Dekker In. New York.

    Google Scholar 

  • Shannon L.M., Key E. & Lew J.Y. 1966. Peroxidase isoenzymes from horse radish roots: Isolation and physiological properties. J. Biol. Chem. 241: 2166–2172.

    PubMed  CAS  Google Scholar 

  • Shibli R.A., Kushad M., Yousef G.G. & Lila M.A. 2007. Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul. 51: 159–169

    Article  CAS  Google Scholar 

  • Shibli R.A., Sawwan J., Swaidat I. & Tahat M. 2001. Increased phosphorus mitigates the adverse effects of salinity in tissue culture. Comm. Soil Sci. Plant Anal. 32: 429–440.

    Article  CAS  Google Scholar 

  • Stewart G.R. & Lee J.A. 1974. The role of proline accumulation in halophytes. Planta 20: 279–289.

    Article  Google Scholar 

  • Takeda Y. 1982. Development study on Jatropha curcas (sabudum) oil as a substitute for diesel engine oil in Thailand. J. Agri. Assoc. 120: 1–8.

    Google Scholar 

  • Uprety D.C. & Sarin M.N. 1976. Physiological studies on salt tolerance in Pisum sativum L. IV, Ionic composition and nitrogen metabolism. Acta Agron. Hung. 25: 455–460.

    CAS  Google Scholar 

  • Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muppala P. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Pamidimarri, S.D.V.N., Kaur, M. et al. Effects of NaCl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas . Biologia 63, 378–382 (2008). https://doi.org/10.2478/s11756-008-0054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0054-7

Key words

Navigation