Skip to main content
Log in

Application of nanomaterials in microbial-cell biosensor constructions

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Microbial cell biosensors, where cells are in direct connection with a transducer enabling quantitative and qualitative detection of an analyte, are very promising analytical tools applied mainly for assays in the environmental field, food industry or biomedicine. Microbial cell biosensors are an excellent alternative to conventional analytical methods due to their specificity, rapid detection and low cost of analysis. Nowadays, nanomaterials are often used in the construction of biosensors to improve their sensitivity and stability. In this review, the combination of microbial and other individual cells with different nanomaterials (carbon nanotubes, graphene, gold nanoparticles, etc.) for the construction of biosensors is described and their applications are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, S. C., Zhou, X. Z., Ye, F., He, Q. Y., Chen, G. C. K., Soo, J. C., Boey, F., Zhang, H., & Chen, P. (2010) Interfacing live cells with nanocarbon substrates. Langmuir, 26, 2244–2247. DOI: 10.1021/la9048743.

    Article  CAS  Google Scholar 

  • Anu Prathap, M. U., Chaurasia, A. K., Sawant, S. N., & Apte, S. K. (2012) Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Analytical Chemistry, 84, 6672–6678. DOI: 10.1021/ac301077d.

    Article  CAS  Google Scholar 

  • Belkin, S. S. (2003) Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology, 6, 206–212. DOI: 10.1016/s1369-5274(03)00059-6.

    Article  CAS  Google Scholar 

  • Bertok, T., Sediva, A., Katrlik, J., Gemeiner, P., Mikula, M., Nosko, M., & Tkac, J. (2013) Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta, 108, 11–18. DOI: 10.1016/j.talanta.2013.02.052.

    Article  CAS  Google Scholar 

  • Bertok, T., Sediva, A., Vikartovska, A., & Tkac, J. (2014) Comparison of the 2D and 3D nanostructured lectin-based biosensors for in situ detection of sialic acid on glycoproteins. International Journal of Electrochemical Science, 9, 890–900.

    Google Scholar 

  • Bianco, A. (2013) Graphene: Safe or toxic? The two faces of the medal. Angewandte Chemie International Edition, 52, 4986–4997. DOI: 10.1002/anie.201209099.

    Article  CAS  Google Scholar 

  • Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlák, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.

    Google Scholar 

  • Byfield, M. P., & Abuknesha, R. A. (1994) Biochemical aspects of biosensors. Biosensors and Bioelectronics, 9, 373–399. DOI: 10.1016/0956-5663(94)80038-3.

    Article  CAS  Google Scholar 

  • Chen, J., Yu, Z.G., Sun, J.F., Jia, J.B., & Li, G. X. (2008a) Preparation of biofilm electrode with Xanthomonas sp. and carbon nanotubes and the application to rapid biochemical oxygen demand analysis in high-salt condition. Water Environment Research, 80, 699–702. DOI: 10.2175/106143008x276732.

    Article  CAS  Google Scholar 

  • Chen, H. Q., Müller, M. B., Gilmore, K. J., Wallace, G. G., & Li, D. (2008b) Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 20, 3557–3561. DOI: 10.1002/adma.200800757.

    Article  CAS  Google Scholar 

  • Chen, G. Y., Pang, D. W. P., Hwang, S. M., Tuan, H. Y., & Hu, Y. C. (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33, 418–427. DOI: 10.1016/j.biomaterials.2011.09.071.

    Article  Google Scholar 

  • Chen, J., Sun, S., Li, C. Z., Zhu, Y. G., & Rosen, B. P. (2014) Biosensor for organoarsenical herbicides and growth promoters. Environmental Science & Technology, 48, 1141–1147. DOI: 10.1021/es4038319.

    Article  CAS  Google Scholar 

  • Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., Ninow, J. L., & de Oliveira, D. (2014) Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67. DOI: 10.1016/j.molcatb.2013.10.019.

    Article  CAS  Google Scholar 

  • Cui, R.J., Huang, H.P., Yin, Z.Z., Gao, D., & Zhu, J.J. (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics, 23, 1666–1673. DOI: 10.1016/j.bios.2008.01.034.

    Article  CAS  Google Scholar 

  • Daniel, M. C., & Astruc, D. (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346. DOI: 10.1021/cr030698+.

    Article  CAS  Google Scholar 

  • Demirkol, D. O., & Timur, S. (2011) Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing. Microchimica Acta, 173, 537–542. DOI: 10.1007/s00604-011-0596-1.

    Article  CAS  Google Scholar 

  • De Muynck, C., Pereira, C. S. S., Naessens, M., Parmentier, S., Soetaert, W., & Vandamme, E. J. (2007) The genus Gluconobacter oxydans: Comprehensive overview of biochemistry and biotechnological applications. Critical Reviews in Biotechnology, 27, 147–171. DOI: 10.1080/07388550701503584.

    Article  Google Scholar 

  • Deng, L., Guo, S. J., Zhou, M., Liu, L., Liu, C., & Dong, S. J. (2010) A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosensors and Bioelectronics, 25, 2189–2193. DOI: 10.1016/j.bios.2010.02.005.

    Article  CAS  Google Scholar 

  • D’Souza, S. F. (2001) Microbial biosensors. Biosensors and Bioelectronics, 16, 337–353. DOI: 10.1016/s0956-5663(01)00125-7.

    Article  Google Scholar 

  • Fakhrullin, R. F., Shlykova, L. V., Zamaleeva, A. I., Nurgaliev, D. K., Osin, Y. N., García-Alonso, J., & Paunov, V. N. (2010) Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromolecular Bioscience, 10, 1257–1264. DOI: 10.1002/mabi.201000161.

    Article  CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Tomčík, P., Gemeiner, P., & Tkac, J. (2011) A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 84, 355–361. DOI: 10.1016/j.talanta.2011.01.004.

    Article  CAS  Google Scholar 

  • Gao, J. H., Gu, H. W., & Xu, B. (2009) Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42, 1097–1107. DOI: 10.1021/ar9000026.

    Article  CAS  Google Scholar 

  • Geim, A. K. (2009) Graphene: Status and prospects. Science, 324, 1530–1534. DOI: 10.1126/science.1158877.

    Article  CAS  Google Scholar 

  • Giouroudi, I., & Keplinger, F. (2013) Microfluidic biosensing systems using magnetic nanoparticles. International Journal of Molecular Sciences, 14, 18535–18556. DOI: 10.3390/ijms140918535.

    Article  Google Scholar 

  • Goenka, S., Sant, V., & Sant, S. (2014) Graphene-based nano-materials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88. DOI: 10.1016/j.jconrel.2013.10.017.

    Article  CAS  Google Scholar 

  • Habib, O., Demirkol, D. O., & Timur, S. (2012) Sol-gel/chitosan/gold nanoparticle-modified electrode in mediated bacterial biosensor. Food Analytical Methods, 5, 188–194. DOI: 10.1007/s12161-011-9248-7.

    Article  Google Scholar 

  • Hnaien, M., Lagarde, F., Bausells, J., Errachid, A., & Jaffrezic-Renault, N. (2011a) A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Analytical and Bioanalytical Chemistry, 400, 1083–1092. DOI: 10.1007/s00216-010-4336-x.

    Article  CAS  Google Scholar 

  • Hnaien, M., Bourigua, S., Bessueille, F., Bausells, J., Errachid, A., Lagarde, F., & Jaffrezic-Renault, N. (2011b) Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection. Electrochimica Acta, 56, 10353–10358. DOI: 10.1016/j.electacta.2011.04.041.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Jaffrezic-Renault, N., & Dzyadevych, S. V. (2008) Conductometric microbiosensors for environmental monitoring. Sensors, 8, 2569–2588. DOI: 10.3390/s8042569.

    Article  Google Scholar 

  • Jiang, W., Mashayekhi, H., & Xing, B. S. (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157, 1619–1625. DOI: 10.1016/j.envpol.2008.12.025.

    Article  CAS  Google Scholar 

  • Kang, S., Mauter, M. S., & Elimelech, M. (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science & Technology, 42, 7528–7534. DOI: 10.1021/es8010173.

    Article  CAS  Google Scholar 

  • Karthikeyan, R., Sathish kumar, K., Murugesan, M., Berchmans, S., & Yegnaraman, V. (2009) Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environmental Science and Technology, 43, 8684–8689. DOI: 10.1021/es901993y.

    Article  CAS  Google Scholar 

  • Karthikeyan, R., & Berchmans, S. (2012) Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresource Technology, 104, 388–393. DOI: 10.1016/j.biortech.2011.10.092.

    Article  Google Scholar 

  • Kasemets, K., Ivask, A., Dubourguier, H. C., & Kahru, A. (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23, 1116–1122. DOI: 10.1016/j.tiv.2009.05.015.

    Article  CAS  Google Scholar 

  • Katrlík, J., Voštiar, I., Šefčovičová, J., Tkáč, J., Mastihuba, V., Valach, M., Štefuca, V., & Gemeiner, P. (2007) A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical & Bioanalytical Chemistry, 388, 287–295. DOI: 10.1007/s00216-007-1211-5.

    Article  Google Scholar 

  • Kim, S. K., Kwen, H. D., & Choi, S. H. (2011) Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation reaction and detection of phenolic compounds in red wines. Sensors, 11, 2001–2012. DOI: 10.3390/s110202001.

    Article  CAS  Google Scholar 

  • Kirgoz, Ü. A., Timur, S., Odaci, D., Pérez, B., Alegret, S., & Merkoçi, A. (2007) Carbon nanotube composite as novel platform for microbial biosensor. Electroanalysis, 19, 893–898. DOI: 10.1002/elan.200603786.

    Article  CAS  Google Scholar 

  • Kochmann, S., Hirsch, T., & Wolfbeis, O. S. (2012) Graphenes in chemical sensors and biosensors. TrAC Trends in Analytical Chemistry, 39, 87–113. DOI: 10.1016/j.trac.2012.06.004.

    Article  CAS  Google Scholar 

  • Kondo, T., & Ikeda, T. (1999) An electrochemical method for the measurements of substrate-oxidizing activity of acetic acid bacteria using a carbon-paste electrode modified with immobilized bacteria. Applied Microbiology and Biotechnology, 51, 664–668. DOI: 10.1007/s002530051448.

    Article  CAS  Google Scholar 

  • Lee, W. C., Lim, C.H.Y.X., Shi, H., Tang, L. A. L., Wang, Y., Lim, C. T., & Loh, K. P. (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 5, 7334–7341. DOI: 10.1021/nn202190c.

    Article  CAS  Google Scholar 

  • Lei, Y., Chen, W., & Mulchandani, A. (2006) Microbial biosensors. Analytica Chimica Acta, 568, 200–210. DOI: 10.1016/j.aca.2005.11.065.

    Article  CAS  Google Scholar 

  • Li, Y. Y., Schluesener, H. J., & Xu, S. Q. (2010) Gold nanoparticle-based biosensors. Gold Bulletin, 43, 29–41. DOI: 10.1007/bf03214964.

    Article  Google Scholar 

  • Li, L., Liang, B., Shi, J. G., Li, F., Mascini, M., & Liu, A. (2012) A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Biosensors and Bioelectronics, 33, 100–105. DOI: 10.1016/j.bios.2011.12.027.

    Article  Google Scholar 

  • Li, L., Liang, B., Li, F., Shi, J. G., Mascini, M., Lang, Q. L., & Liu, A. (2013) Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multi-walled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose. Biosensors and Bioelectronics, 42, 156–162. DOI: 10.1016/j.bios.2012.10.062.

    Article  CAS  Google Scholar 

  • Liu, S.B., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang, Y. H., & Chen, Y. (2009) Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3, 3891–3902. DOI: 10.1021/nn901252r.

    Article  CAS  Google Scholar 

  • Liu, J., Qiao, Y., Guo, C.X., Lim, S., Song, H., & Li, C.M. (2012) Graphene/carbon cloth anode for high-performancemediatorless microbial fuel cells. Bioresource Technology, 114, 275–280. DOI: 10.1016/j.biortech.2012.02.116.

    Article  CAS  Google Scholar 

  • Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105, 1103–1170. DOI: 10.1021/cr0300789.

    Article  CAS  Google Scholar 

  • Lu, A. H., Salabas, E. L., & Schüth, F. (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244. DOI: 10.1002/anie.200602866.

    Article  CAS  Google Scholar 

  • Merkoçi, A. (2006) Carbon nanotubes in analytical sciences. Microchimica Acta, 152, 157–174. DOI: 10.1007/s00604-005-0439-z.

    Article  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004) Electric field in atomically thin carbon films. Science, 306, 666–669. DOI: 10.1126/science.1102896.

    Article  CAS  Google Scholar 

  • Odaci, D., Kayahan, S. K., Timur, S., & Toppare, L. (2008a) Use of a thiophene-based conducting polymer in microbial biosensing. Electrochimica Acta, 53, 4104–4108. DOI: 10.1016/j.electacta.2007.12.065.

    Article  CAS  Google Scholar 

  • Odaci, D., Timur, S., & Telefoncu, A. (2008b) Bacterial sensors based on chitosan matrices. Sensors and Actuators B: Chemical, 134, 89–94. DOI: 10.1016/j.snb.2008.04.013.

    Article  CAS  Google Scholar 

  • Odaci, D., Timur, S., & Telefoncu, A. (2009) A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry, 75, 77–82. DOI: 10.1016/j.bioelechem.2009.01.002.

    Article  CAS  Google Scholar 

  • Park, M., Tsai, S. L., & Chen, W. (2013) Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors, 13, 5777–5795. DOI: 10.3390/s130505777.

    Article  CAS  Google Scholar 

  • Pérez-López, B., & Merkoçi, A. (2012) Carbon nanotubes and graphene in analytical sciences. Microchimica Acta, 179, 1–16. DOI: 10.1007/s00604-012-0871-9.

    Article  Google Scholar 

  • Pfleger, B.F., Pitera, D. J., Newman, J.D., Martin, V. J.J., & Keasling, J. D. (2007) Microbial sensors for small molecules: Development of a mevalonate biosensor. Metabolic Engineering, 9, 30–38. DOI: 10.1016/j.ymben.2006.08.002.

    Article  CAS  Google Scholar 

  • Ponomareva, O. N., Arlyapov, V. A., Alferov, V. A., & Reshetilov, A. N. (2011) Microbial biosensors for detection of biological oxygen demand (a review). Applied Biochemistry and Microbiology, 47, 1–11. DOI: 10.1134/s0003683811010108.

    Article  CAS  Google Scholar 

  • Prodromidis, M. I., & Karayannis, M. I. (2002) Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241–261. DOI: 10.1002/1521-4109(200202)14:4<241::aid-elan241>3.0.co;2-p.

    Article  CAS  Google Scholar 

  • Pumera, M. (2010) Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39, 4146–4157. DOI: 10.1039/c002690p.

    Article  CAS  Google Scholar 

  • Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29, 954–965. DOI: 10.1016/j.trac.2010.05.011.

    Article  CAS  Google Scholar 

  • Pumera, M. (2013) Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 36, 14–18. DOI: 10.1016/j.elecom.2013.08.028.

    Article  CAS  Google Scholar 

  • Putzbach, W., & Ronkainen, N. J. (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors, 13, 4811–4840. DOI: 10.3390/s130404811.

    Article  CAS  Google Scholar 

  • Rao, C. N. R., Subrahmanyam, K. S., Ramakrishna Matte, H. S. S., Maitra, U., Moses, K., & Govindaraj, A. (2011) Graphene: Synthesis, functionalization and properties. International Journal ofModern Physics B, 25, 4107–4143. DOI: 10.1142/s0217979211059358.

    Article  CAS  Google Scholar 

  • Rawson, F.J., Garrett, D. J., Leech, D., Downard, A. J., & Baronian, K. H. R. (2011) Electron transfer from Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: Application to a whole cell biosensor. Biosensors and Bioelectronics, 26, 2383–2389. DOI: 10.1016/j.bios.2010.10.016.

    Article  CAS  Google Scholar 

  • Rogers, P. H., Benkstein, K. D., & Semancik, S. (2012) Machine learning applied to chemical analysis: Sensing multiple biomarkers in simulated breath using a temperature-pulsed electronic-nose. Analytical Chemistry, 84, 9774–9781. DOI: 10.1021/ac301687j.

    Article  CAS  Google Scholar 

  • Rosi, N. L., & Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562. DOI: 10.1021/cr030067f.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N. (2005) Microbial, enzymatic, and immune biosensors for ecological monitoring and control of biotechnological processes. Applied Biochemistry and Microbiology, 41, 442–449. DOI: 10.1007/s10438-005-0079-4.

    Article  CAS  Google Scholar 

  • Saei, A. A., & Dolatabadi, J. E. N. (2013) Electrochemical biosensors for glucose based on metal nanoparticles. TrAC Trends in Analytical Chemistry, 42, 216–227. DOI: 10.1016/j.trac.2012.09.011.

    Article  CAS  Google Scholar 

  • Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., & Carriere, M. (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology, 43, 8423–8429. DOI: 10.1021/es9016975.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprstý, V., & Tkac, J. (2011) High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI: 10.1016/j.elecom.2011.06.013.

    Article  Google Scholar 

  • Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012) Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x.

    Article  Google Scholar 

  • Sin, M. L. Y., Mach, K. E., Wong, P. K., & Liao, J. C. (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics, 14, 225–244. DOI: 10.1586/14737159.2014.888313.

    Article  CAS  Google Scholar 

  • Souiri, M., Gammoudi, I., Ouada, H. B., Mora, L., Jouenne, T., Jaffrezic-Renault, N., Dejous, C., Othmane, A., & Duncan, A. C. (2009) Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals. Procedia Chemistry, 1, 1027–1030. DOI: 10.1016/j.proche.2009.07.256.

    Article  CAS  Google Scholar 

  • Su, L., Jia, W. Z., Hou, C. G., & Lei, Y. (2011) Microbial biosensors: A review. Biosensors and Bioelectronics, 26, 1788–1799. DOI: 10.1016/j.bios.2010.09.005.

    Article  CAS  Google Scholar 

  • Švitel, J., Tkáč, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006) Gluconobacter in biosensors: applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI: 10.1007/s10529-006-9195-3.

    Article  Google Scholar 

  • Syed, M. A. (2014) Advances in nanodiagnostic techniques for microbial agents. Biosensors and Bioelectronics, 51, 391–400. DOI: 10.1016/j.bios.2013.08.010.

    Article  CAS  Google Scholar 

  • Timur, S., Anik, U., Odaci, D., & Gorton, L. (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochemistry Communications, 9, 1810–1815. DOI: 10.1016/j.elecom.2007.04.012.

    Article  CAS  Google Scholar 

  • Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI: 10.1016/s0956-5663(02)00244-0.

    Article  CAS  Google Scholar 

  • Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009) Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013.

    Article  CAS  Google Scholar 

  • van der Meer, J. R., & Belkin, S. (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, 8, 511–522. DOI: 10.1038/nrmicro2392.

    Article  Google Scholar 

  • Vostiar, I., Ferapontova, E. E., & Gorton, L. (2004) Electrical “wiring” of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte. Electrochemistry Communications, 6, 621–626. DOI: 10.1016/j.elecom.2004.04.017.

    Article  CAS  Google Scholar 

  • Wang, J. (2005a) Nanomaterial-based electrochemical biosensors. Analyst, 130, 421–426. DOI: 10.1039/b414248a.

    Article  CAS  Google Scholar 

  • Wang, J. (2005b) Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 17, 7–14. DOI: 10.1002/elan.200403113.

    Article  CAS  Google Scholar 

  • Wang, H. W., Lang, Q. L., Li, L., Liang, B., Tang, X. J., Kong, L. G., Mascini, M., & Liu, A. (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: Construction, characterization, and its electrochemical glucose sensing application. Analytical Chemistry, 85, 6107–6112. DOI: 10.1021/ac400979r.

    Article  CAS  Google Scholar 

  • Xu, X., & Ying, Y. (2011) Microbial biosensors for environmental monitoring and food analysis. Food Reviews International, 27, 300–329. DOI: 10.1080/87559129.2011.563393.

    Article  Google Scholar 

  • Yang, C.N., Mamouni, J., Tang, Y.G., & Yang, L.J. (2010) Antimicrobial activity of single-walled carbon nanotubes: Length effect. Langmuir, 26, 16013–16019. DOI: 10.1021/la103110g.

    Article  CAS  Google Scholar 

  • Zamaleeva, A. I., Sharipova, I. R., Shamagsumova, R. V., Ivanov, A. N., Evtugyn, G. A., Ishmuchametova, D. G., & Fakhrullin, R. F. (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods, 3, 509–513. DOI: 10.1039/c0ay00627k.

    Article  CAS  Google Scholar 

  • Zhang, Y. Z., Mo, G. Q., Li, X. W., Zhang, W., Zhang, J. Q., Ye, J. S., Huang, X. D., & Yu, C. Z. (2011) A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196, 5402–5407. DOI: 10.1016/j.jpowsour.2011.02.06.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šefčovičová, J., Tkac, J. Application of nanomaterials in microbial-cell biosensor constructions. Chem. Pap. 69, 42–53 (2015). https://doi.org/10.2478/s11696-014-0602-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0602-2

Keywords

Navigation