Skip to main content
Log in

Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A convenient method was developed for the determination and validation of fosthiazate in cucumber and soil. The procedure is based on liquid partitioning with acetonitrile followed by dispersive solid phase extraction as the clean-up step, after which samples were analysed by gas chromatography-mass spectrometry (GC-MS). The average recoveries ranged from 91.2 % to 99.0 % with relative standard deviations (RSDs) of less than 6.05 %, at three fortification levels (0.02 mg kg−1, 0.1 mg kg−1, 0.5 mg kg−1) in cucumber and soil, and the limits of quantification (LOQs) for fosthiazate were all established at 0.02 mg kg−1. The proposed method was applied successfully to analyses of the dissipation and residue of fosthiazate in field trials. The dissipation rate of fosthiazate was described using pseudo-first-order kinetics with a half-life of 4.33 days and 4.08 days in soil in Beijing and Shandong, respectively. In the terminal residue experiment, fosthiazate residues in cucumber and soil were clearly below the maximum residue level (MRL, 0.2 mg kg−1) set in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amvrazi, E. G., & Tsiropoulos, N. G. (2009). Chemometric study and optimization of extraction parameters in single-drop microextraction for the determination of multiclass pesticide residues in grapes and apples by gas chromatography mass spectrometry. Journal of Chromatography A, 1216, 7630–7638. DOI: 10.1016/j.chroma.2009.08.092.

    Article  CAS  Google Scholar 

  • Amvrazi, E. G., Papadi-Psyllou, A. T., & Tsiropoulos, N. G. (2010). Pesticide enrichment factors and matrix effects on the determination of multiclass pesticides in tomato samples by single-drop microextraction (SDME) coupled with gas chromatography and comparison study between SDME and acetone-partition extraction procedure. International Journal of Environmental Analytical Chemistry, 90, 245–259. DOI: 10.1080/03067310903166699.

    Article  CAS  Google Scholar 

  • Buser, H. R., & Müller, M. D. (1995). Environmental behavior of acetamide pesticide stereoisomers. 1. Stereo- and enantioselective determination using chiral high-resolution gas chromatography and chiral high-performance liquid chromatography. Environmental Science & Technology, 29, 2023–2030. DOI: 10.1021/es00008a022.

    Article  CAS  Google Scholar 

  • Chabrier, C., Hubervic, J., & Quénéhervé, P. (2002). Evaluation of fosthiazate (Nemathorin® 10G) for the control of nematodes in banana fields in Martinique. Nematropica, 32, 137–147.

    Google Scholar 

  • Gilreath, J. P., & Santos, B. M. (2008). Managing weeds and nematodes with combinations of methyl bromide alternatives in tomato. Crop Protection, 27, 648–652. DOI: 10.1016/j.cropro.2007.09.008.

    Article  CAS  Google Scholar 

  • Lin, K., Zhang, F., Zhou, S., Liu, W., Gan, J., & Pan, Z. (2007). Stereoisomeric separation and toxicity of the nematicide fosthiazate. Environmental Toxicology and Chemistry, 26, 2339–2344. DOI: 10.1897/07-255r.1.

    Article  CAS  Google Scholar 

  • Lin, K., Liu, W., Li, L., & Gan, J. (2008). Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. Journal of Agricultural and Food Chemistry, 56, 4273–4277. DOI: 10.1021/jf073535l.

    Article  CAS  Google Scholar 

  • Minton, N. A., Brenneman, T. B., Bondari, K., & Harrison, G. W. (1993). Activity of Fosthiazate against Meloidogyne arenaria, Frankliniella spp., and Sclerotium rolfsii in peanut. Peanut Science, 20, 66–71. DOI: 10.3146/i0095-3679-20-1-17.

    Article  CAS  Google Scholar 

  • Pantelelis, I., Karpouzas, D. G., Menkissoglu-Spiroudi, U., & Tsiropoulos, N. (2006). Influence of soil physicochemical and biological properties on the degradation and adsorption of the nematicide fosthiazate. Journal of Agricultural and Food Chemistry, 54, 6783–6789. DOI: 10.1021/jf061098p.

    Article  CAS  Google Scholar 

  • PRC Ministry of Health, & PRC Ministry of Agriculture (2012). PRC National Standard (GUOBIAO) GB 2763-2012: National food safety standard: Maximum residue limits for pesticides in food. Beijing, China: Ministry of Health of the People℉s Republic of China, Ministry of Agriculture of the People℉s Republic of China.

    Google Scholar 

  • Pullen, M. P., & Fortnum, B. A. (1999). Fosthiazate controls Meloidogyne arenaria and M. incognita in flue-cured tobacco. Journal of Nematology, 31, 694–699.

    CAS  Google Scholar 

  • Qin, S., Gan, J., Liu, W., & Becker, J. O. (2004). Degradation and adsorption of fosthiazate in soil. Journal of Agricultural and Food Chemistry, 52, 6239–6242. DOI: 10.1021/jf049094c.

    Article  CAS  Google Scholar 

  • Silburn, D. M., Foley, J. L., & deVoil, R. C. (2013). Managing runoff of herbicides under rainfall and furrow irrigation with wheel traffic and banded spraying. Agriculture, Ecosystems and Environment, 180, 40–53. DOI: 10.1016/j.agee.2011.08.018.

    Article  Google Scholar 

  • Tixier, P., Chabrier, C., & Malézieux, E. (2007). Pesticide residues in heterogeneous plant populations, a model-based approach applied to nematicides in banana (Musa spp.). Journal of Agricultural and Food Chemistry, 55, 2504–2508. DOI: 10.1021/jf062710f.

    Article  CAS  Google Scholar 

  • Tobin, J. D., Haydock, P. P. J., Hare, M. C., Woods, S. R., & Crump, D. H. (2008). Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biological Control, 46, 194–201. DOI: 10.1016/j.biocontrol.2008.03.014.

    Article  Google Scholar 

  • Tsiropoulos, N. G., Likas, D. T., & Karpouzas, D. G. (2005). Liquid chromatographic determination of fosthiazate residues in environmental samples and application of the method to a fosthiazate field dissipation study. Journal of AOAC International, 88, 1827–1833.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2004). Pesticide fact sheet: Fosthiazate. Washington, DC, USA: USEPA, Office of Prevention, Pesticides and Toxic Substances.

    Google Scholar 

  • Wang, J., Chow, W., Leung, D., & Chang, J. (2012). Application of ultrahigh-performance liquid chromatography and electrospray ionization quadrupole orbitrap high-resolution mass spectrometry for determination of 166 pesticides in fruits and vegetables. Journal of Agricultural and Food Chemistry, 60, 12088–12104. DOI: 10.1021/jf303939s.

    Article  CAS  Google Scholar 

  • Wong, J. W., Hennessy, M. K., Hayward, D. G., Krynitsky, A. J., Cassias, I., & Schenck, F. J. (2007). Analysis of organophosphorus pesticides in dried ground ginseng root by capillary gas chromatography-mass spectrometry and — flame photometric detection. Journal of Agricultural and Food Chemistry, 55, 1117–1128. DOI: 10.1021/jf062774q.

    Article  CAS  Google Scholar 

  • Woods, S. R., Haydock, P. P. J., & Edmunds, C. (1999). Mode of action of fosthiazate used for the control of the potato cyst nematode Globodera pallida. Annals of Applied Biology, 135, 409–415. DOI: 10.1111/j.1744-7348.1999.tb00868.x.

    Article  CAS  Google Scholar 

  • Wu, H., Wang, C. J., Bian, X. W., Zeng, S. Y., Lin, K. C., Wu, B., Zhang, G. A., & Zhang, X. (2011). Nematicidal efficacy of isothiocyanates against root-knot nematode Meloidogyne javanica in cucumber. Crop Protection, 30, 33–37. DOI: 10.1016/j.cropro.2010.09.004.

    Article  Google Scholar 

  • Wu, J., Wang, K., & Zhang, H. (2012). Residues and dissipation dynamics of fosthiazate in tomato and soil. Bulletin of Environmental Contamination and Toxicology, 89, 664–668. DOI: 10.1007/s00128-012-0594-y.

    Article  CAS  Google Scholar 

  • Xu, X. L., Li, L., Zhong, W. K., & He, Y. J. (2009). Multi-residue analysis of 205 crop pesticides using minisolid phase extraction-large volume injection-GC-MS. Chromatographia, 70, 173–183. DOI: 10.1365/s10337-009-1136-6.

    Article  CAS  Google Scholar 

  • Yang, A., Park, J. H., Abd El-Aty, A. M., Choi, J. H., Oh, J. H., Do, J. A., Kwon, K., Shim, K. H., Choi, O. J., & Shim, J. H. (2012). Synergistic effect of washing and cooking on the removal of multi-classes of pesticides from various food samples. Food Control, 28, 99–105. DOI: 10.1016/j.foodcont.2012.04.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Hu, J. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS. Chem. Pap. 68, 1368–1374 (2014). https://doi.org/10.2478/s11696-014-0589-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0589-8

Keywords

Navigation