Skip to main content
Log in

Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, a modified genome shuffling method was used to improve γ-decalactone (GDL) production of Yarrowia sp. China General Microbiological Culture Collection Center (CGMCC 2.1405). Five UV mutant strains with higher GDL production or shorter fermentation time were selected as the initial strains for genome shuffling. Conditions of protoplast preparation, regeneration, inactivation, fusion, sporulation of recombinant fusants and ascospore isolation were optimized. Four hereditarily stable haploid recombinants with high GDL production were obtained by three rounds of genome shuffling. Among them, a high GDL-producing recombinant, G3-3.21, producing 3.75 g L−1 of GDL in the fermentation medium after 64 h was obtained. This value is 6.54-fold higher than that of the parent strains CGMCC 2.1405, at the peak production shortened by 8 h. Mathematical kinetic models of CGMCC 2.1405 and G3-3.21 were established to well predict the cell growth and GDL production. The cell growth of G3-3.21 was significantly faster than that of CGMCC 2.1405. The product synthesis constant associated with the strain growth of G3-3.21 was higher than that associated with CGMCC 2.1405. Long-chain fatty-acyl-CoA oxidase activities of G3-3.21 were 833 mU mg−1 and 6.83 times higher than that of CGMCC 2.1405.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguedo, M., Ly, M. H., Belo, I., Teixeira, J. A., Belin, J. M.,& Waché, Y. (2004a). The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technology and Biotechnology, 42, 327–336.

    CAS  Google Scholar 

  • Aguedo, M., Waché, Y., Coste, F., Husson, F.,& Belin, J. M. (2004b). Impact of surfactants on the biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic, 29, 31–36. DOI: 10.1016/j.molcatb.2003.11.018.

    Article  CAS  Google Scholar 

  • Bajwa, P. K., Pinel, D., Martin, V. J. J., Trevors, J. T.,& Lee, H. (2010). Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Journal of Microbiological Methods, 81, 179–186. DOI: 10.1016/j.mimet.2010.03.009.

    Article  CAS  Google Scholar 

  • Beney, L., Marechal, P.,& Gervais, P. (2001). Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 56, 513–516. DOI: 10.1007/s002530100619.

    Article  CAS  Google Scholar 

  • Blin-Perrin, C., Molle, D., Dufosse, L., Le-Quere, J. L., Viel, C., Mauvais, G.,& Feron, G. (2000). Metabolism of ricinoleic acid into γ-decalactone: β-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiology Letters, 188, 69–74. DOI: 10.1111/j.1574-6968.2000.tb09170.x.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of protein-dye bingidng. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Christoph, N., & Drawert, F. (1985). Olfactory thresholds of odour stimuli determined by gas chromatographic sniffing technique; structure-activity relationships. In R. G. Berger, & F. Drawert (Eds.), Topics in flavour research: Proceedings of the international conference (pp. 427–441). Berlin, Germany: Cornell University Press.

    Google Scholar 

  • Dufossé, L., Feron, G., Mauvais, G., Bonnarme, P., Durand, A.,& Spinnler, H. E. (1998). Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. Journal of Fermentation and Bioengineering, 86, 169–173. DOI: 10.1016/s0922-338x(98)80056-1.

    Article  Google Scholar 

  • Feron, G., Bonnarme, P.,& Durand, A. (1996). Prospects for the microbial production of food flavours. Trends in Food Science & Technology, 7, 285–293. DOI: 10.1016/0924-2244(96)10032-7.

    Article  CAS  Google Scholar 

  • Feron, G., Blin-Perrin, C., Krasniewski, I., Mauvais, G.,& Lherminier, J. (2005). Metabolism of fatty acid in yeast: Characterisation of β-oxidation and ultrastructural changes in the genus Sporidiobolus sp. cultivated on ricinoleic acid methyl ester. FEMS Microbiology Letters, 250, 63–69. DOI: 10.1016/j.femsle.2005.06.045.

    Article  CAS  Google Scholar 

  • Gao, X. F., Zhao, H., Zhang, G. H., He, K.,& Jin, Y. L. (2012). Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Current Microbiology, 65, 128–132. DOI: 10.1007/s00284-012-0134-3.

    Article  CAS  Google Scholar 

  • Gatfield, I., & Rabenhorst, J. (1999). US Patent 6451565. Washington, D.C., USA: U.S. Patent and Trademark Office.

  • Gomes, N., Braga, A., Teixeira, J. A.,& Belo, I. (2013). Impact of lipase-mediated hydrolysis of castor oil on Γ-decalactone production by Yarrowia lipolytica. Journal of the American Oil Chemists’ Society, 90, 1131–1137. DOI: 10.1007/s11746-013-2231-2.

    Article  CAS  Google Scholar 

  • Gong, J. X., Zheng, H. J., Wu, Z. J., Chen, T.,& Zhao, X. M. (2009). Genome shuffling: Progress and applications for phenotype improvement. Biotechnology Advances, 27, 996–1005. DOI: 10.1016/j.biotechadv.2009.05.016.

    Article  Google Scholar 

  • Hida, H., Yamada, T.,& Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393. DOI: 10.1007/s00253-006-0613-1.

    Article  CAS  Google Scholar 

  • Hurtado, C. A.,& Rachubinski, R. A. (2002). Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica. Eukaryotic Cell, 1, 526–537. DOI: 10.1128/ec.1.4.526-537.2002.

    Article  CAS  Google Scholar 

  • Iacazio, G., Martini, D., Faure, B.,& N’Guyen, M. H. (2002). Isolation and characterisation of 8-hydroxy-3Z,5Ztetradecadienoic acid, a putative intermediate in Pichia guilliermondii γ-decalactone biosynthesis from ricinoleic acid. FEMS Microbiology Letters, 209, 57–62. DOI: 10.1111/j.1574-6968.2002.tb11109.x.

    Article  CAS  Google Scholar 

  • Jian, Z. G., & Wang, Z. X. (1994). Laboratory manual for industrial microbiology. Beijing, China: Light Industry Press.

    Google Scholar 

  • Kang, J. X., Chen, X. J., Chen, W. R., Li, M. S., Fang, Y., Li, D. S., Ren, Y. Z.,& Liu, D. Q. (2011). Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochemistry, 46, 792–795. DOI: 10.1016/j.procbio.2010.11.004.

    Article  CAS  Google Scholar 

  • Lee, S. L.,& Chou, C. C. (1994). Growth and production of Γ-decalactone and cis-6-dodecen-4-olide by Sporobolomyces odorus in the presence of fatty acids and oils. Journal of Fermentation and Bioengineering, 78, 114–116. DOI: 10.1016/0922-338x(94)90191-0.

    Article  CAS  Google Scholar 

  • Lee, S. L., Cheng, H. Y., Chen, W. C.,& Chou, C. C. (1999). Effect of physical factors on the production of Γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Process Biochemistry, 34, 845–850. DOI: 10.1016/s0032-9592(99)00010-2.

    Article  CAS  Google Scholar 

  • Lin, S. J., Lee, S. L.,& Chou, C. C. (1996). Effects of various fatty acid components of castor oil on the growth and production of Γ-decalactone by Sporobolomyces odorus. Journal of Fermentation and Bioengineering, 82, 42–45. DOI: 10.1016/0922-338x(96)89452-9.

    Article  CAS  Google Scholar 

  • Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H.,& Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641–648. DOI: 10.1007/s00253-012-4322-7.

    Article  CAS  Google Scholar 

  • Pagot, Y., Le Clainche, A., Nicaud, J. M., Wache, Y.,& Belin, J. M. (1998). Peroxisomal β-oxidation activities and Γ-decalactone production by the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 49, 295–300. DOI: 10.1007/s002530051172.

    Article  CAS  Google Scholar 

  • Pinches, A.,& Pallent, L. J. (1986). Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnology and Bioengineering, 28, 1484–1496. DOI: 10.1002/bit.260281006.

    Article  CAS  Google Scholar 

  • Su, C., Chen, H.,& Pan, X. H. (2010). Study of a strain with high yielding of gamma-decalactone mutated by combinated mutagenesis. Food Science Biotechnology, 10, 20–23.

    Google Scholar 

  • Tahara, S., Fujiwara, K.,& Mizutani, J. (1973). Neutral constituents of volatiles in cultured medium of Sporobolomyces odorus. Agricultural and Biological Chemistry, 37, 2855–2861.

    Article  CAS  Google Scholar 

  • Waché, Y., Pagot, Y., Nicaud, J. M.,& Belin, J. M. (1998). Acyl-CoA oxidase, a key step for lactone production by Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic, 5, 165–169. DOI: 10.1016/s1381-1177(98)00027-7.

    Article  Google Scholar 

  • Waché, Y., Aguedo, M., Choquet, A., Gatfield, I. L., Nicaud, J. M.,& Belin, J. M. (2001). Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Applied and Environment Microbiology, 67, 5700–5704. DOI: 10.1128/aem.67.12.5700-5704.2001.

    Article  CAS  Google Scholar 

  • Waché, Y., Husson, F., Feron, G.,& Belin, J. M. (2006). Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie van Leeuwenhoek, 89, 405–416. DOI: 10.1007/s10482-005-9049-3.

    Article  Google Scholar 

  • Weiss, R. M.,& Ollis, D. F. (1980). Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 22, 859–873. DOI: 10.1002/bit.260220410.

    Article  CAS  Google Scholar 

  • Yu, L., Pei, X. L., Lei, T., Wang, Y. H.,& Feng, Y. (2008). Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159. DOI: 10.1016/j.jbiotec.2008.01.008.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C.,& del Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646. DOI: 10.1038/415644a.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, J. Z., Huang, J. S.,& Mao, Z. W. (2010). Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. Journal of Biotechnology, 148, 139–143. DOI: 10.1016/j.jbiotec.2010.05.008.

    Article  CAS  Google Scholar 

  • Zheng, D. Q., Wu, X. C., Tao, X. L., Wang, P. M., Li, P., Chi, X. Q., Li, Y. D., Yan, Q. F.,& Zhao, Y. H. (2011). Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology, 102, 3020–3027. DOI: 10.1016/j.biortech.2010.09.122.

    Article  CAS  Google Scholar 

  • Zheng, P., Zhang, K. K., Yan, Q., Xu, Y.,& Sun, Z. H. (2013). Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. Journal of Industrial Microbiology & Biotechnology, 40, 831–840. DOI: 10.1007/s10295-013-1283-5.

    Article  CAS  Google Scholar 

  • Zhong, H., Zhao, Y., Li, W.,& Li, C. (2011). Construction of high yield γ-decalactone strains by protoplast fusion technique. China Brewing, 230, 102–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, YP., Mu, XQ. & Xu, Y. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling. Chem. Pap. 68, 1030–1040 (2014). https://doi.org/10.2478/s11696-014-0551-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0551-9

Keywords

Navigation