Skip to main content

Advertisement

Log in

Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The inhibitory activity of caffeine (1,3,7-trimethyl xanthine) on artificial saliva was studied on a CoCrMo alloy using different electrochemical methods: open circuit potential (OCP), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The results show that caffeine produces an inhibitory effect on the anodic currents due to its adsorption on the surface of the alloy. Temperature is another parameter with an influence on corrosion processes, so thermodynamic data were obtained from Arrhenius plots and Langmuir adsorption isotherms. The protective action of caffeine is enhanced at high temperatures at OCP, while for potentiodynamic experiments high temperatures block the inhibitory activity of caffeine and the corrosion rate increases. The process may also be studied by a simulation, determining the functional dependence between OCP, corrosion current density (i corr), corrosion potential (E corr), breakdown potential (E bd) and temperature and amount of caffeine in artificial saliva, for Heraenium® CE. The neural network-based methodology applied in this work provides accurate results, thus proving to be an efficient modelling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benali, O., Larabi, L., Traisnel, M., Gengembre, L., & Harek, Y. (2007). Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1M HClO4. Applied Surface Science, 253, 6130–6139. DOI: 10.1016/j.apsusc.2007.01.075.

    Article  CAS  Google Scholar 

  • Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. M. (2009). Galvanic corrosion of titanium coupled to welded titanium in LiBr solutions at different temperatures. Corrosion Science, 51, 1095–1102. DOI: 10.1016/j.corsci.2009.02.023.

    Article  CAS  Google Scholar 

  • Cosman, N. P., Fatih, K., Roscoe, S. G. (2005). Electrochemical impedance spectroscopy study of the adsorption behaviour of α-lactalbumin and β-casein at stainless steel. Journal of Electroanalytical Chemistry, 574, 261–271. DOI: 10.1016/j.jelechem.2004.08.007.

    Article  CAS  Google Scholar 

  • Cottis, R. A., Qing, L., Owen, G., Gartland, S. J., Helliwell, I. A., & Turega, M. (1999). Neural network methods for corrosion data reduction. Materials & Design, 20, 169–178. DOI: 10.1016/s0261-3069(99)00026-6.

    Article  CAS  Google Scholar 

  • Cuong, N. T., Tai, T. B., Ha, V. T. T., & Nguyen, M. T. (2010). Thermochemical parameters of caffeine, theophylline, and xanthine. Journal of Chemical Thermodynamics, 42, 437–440. DOI: 10.1016/j.jct.2009.10.006.

    Article  CAS  Google Scholar 

  • da Trindade, L. G., & Gonçalves, R. S. (2009). Evidence of caffeine adsorption on a low-carbon steel surface in ethanol. Corrosion Science, 51, 1578–1583. DOI: 10.1016/j.corsci.2009.03.038.

    Article  CAS  Google Scholar 

  • de Souza, F. S., & Spinelli, A. (2009). Caffeic acid as a green corrosion inhibitor in mild steel. Corrosion Science, 51, 642–649. DOI: 10.1016/j.corsci.2008.12.013.

    Article  CAS  Google Scholar 

  • Fallavena, T., Antonow, M., & Gonçalves, R. S. (2006). Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Applied Surface Science, 253, 566–571. DOI: 10.1016/j.apsusc.2005.12.114.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., & Lona, L. M. F. (2005). Neural network applications in polymerization processes. Brazilian Journal of Chemical Engineering, 22, 401–418. DOI: 10.1590/s0104-66322005000300009.

    Article  CAS  Google Scholar 

  • Franceschetti, D. R., & MacDonald, J. R. (1977). Electrode kinetics, equivalent circuits, and system characterization: Small-signal conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 82, 271–301. DOI: 10.1016/s0022-0728(77)80262-3.

    Article  Google Scholar 

  • Gece, G. (2011). Drugs: A review of promising novel corrosion inhibitors. Corrosion Science, 53, 3873–3898. DOI: 10.1016/j.corsci.2011.08.006.

    Article  CAS  Google Scholar 

  • Giacomelli, F. C., Giacomelli, C., & Spinelli, A. (2004). Behavior of a Co-Cr-Mo biomaterial in simulated body fluid solutions studied by electrochemical and surface analysis techniques. Journal of Brazilian Chemical Society, 15, 541–547. DOI: 10.1590/s0103-50532004000400016.

    Article  CAS  Google Scholar 

  • Gonçalves, R. S., & Mello, L. D. (2001). Electrochemical investigation of ascorbic acid adsorption on low-carbon steel in 0.50 M Na2SO4 solutions. Corrosion Science, 43, 457–470. DOI: 10.1016/s0010-938x(00)00102-5.

    Article  Google Scholar 

  • Gonçalves, R. S., Azambuja, D. S., & Lucho, A. M. S. (2002). Electrochemical studies of propargyl alcohol as corrosion inhibitor for nickel, copper, and copper/nickel (55/45) alloy. Corrosion Science, 44, 467–479. DOI: 10.1016/s0010-938x(01)00069-5.

    Article  Google Scholar 

  • Grosser, F. N., & Gonçalves, R. S. (2008). Electrochemical evidence of caffeine adsorption on zinc surface in ethanol. Corrosion Science, 50, 2934–2938. DOI: 10.1016/j.corsci.2008.07.010.

    Article  CAS  Google Scholar 

  • Hodgson, A. W. E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C. O. A., & Mischler, S. (2004). Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochimica Acta, 49, 2167–2178. DOI: 10.1016/j.electacta.2003.12.043.

    Article  CAS  Google Scholar 

  • Igual-Muñoz, A., & Mischler, S. (2007). Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. Journal of the Electrochemical Society, 154, C562–C570. DOI: 10.1149/1.2764238.

    Article  CAS  Google Scholar 

  • Igual-Muñoz, A., & Casabán Julián, L. (2010). Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy. Electrochimica Acta, 55, 5428–5439. DOI: 10.1016/j.electacta.2010.04.093.

    Article  CAS  Google Scholar 

  • Manaranche, C., & Hornberger, H. (2007). A proposal for the classification of dental alloys according to their resistance to corrosion. Dental Materials, 23, 1428–1437. DOI: 10.1016/j.dental.2006.11.030.

    Article  CAS  Google Scholar 

  • Metikoš-Huković, M., & Babić, R. (2009). Some aspects in designing passive alloys with an enhanced corrosion resistance. Corrosion Science, 51, 70–75. DOI: 10.1016/j.corsci.2008.10.004.

    Article  CAS  Google Scholar 

  • Milošev, I., & Strehblow, H. H. (2003). The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 48, 2767–2774. DOI: 10.1016/s0013-4686(03)00396-7.

    Article  CAS  Google Scholar 

  • Molina, C., Nogués, L. I., Martinez-Gomis, J., Peraire, M., Salsench, J., Sevilla, P., & Gill, F. J. (2008). Dental casting alloys behaviour during power toothbrushing with toothpastes of various abrasivities. Part II: corrosion and ion release. Journal of Materials Science: Materials in Medicine, 19, 3015–3019. DOI: 10.1007/s10856-008-3432-3.

    Article  CAS  Google Scholar 

  • Morad, M. S. (2007). Some environmentally friendly formulations as inhibitors for mild steel corrosion in sulfuric acid solution. Journal Applied Electrochemistry, 37, 661–668. DOI: 10.1007/s10800-007-9297-1.

    Article  CAS  Google Scholar 

  • Ouerd, A., Alemany-Dumont, C., Normand, B., & Szunerits, S. (2008). Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta, 53, 4461–4469. DOI: 10.1016/j.electacta.2008.01.025.

    Article  CAS  Google Scholar 

  • Popova, A., Sokolova, E., Raicheva, S., & Christov, M. (2003). AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corrosion Science, 45, 33–58. DOI: 10.1016/s0010-938x(02)00072-0.

    Article  Google Scholar 

  • Popova, A. (2007). Temperature effect on mild steel corrosion in acid media in presence of azoles. Corrosion Science, 49, 2144–2158. DOI: 10.1016/j.corsci.2006.10.020.

    Article  CAS  Google Scholar 

  • Saba, P., Brown, W. A., & Omanovic, S. (2006). Interactive behavior of caffeine at a platinum electrode surface. Materials Chemistry and Physiscs, 100, 285–291. DOI: 10.1016/j.matchemphys.2005.12.045.

    Article  CAS  Google Scholar 

  • Sabino, R., Azambuja, D. S., & Gonçalves, R. S. (2010). Electrochemical behavior of aluminum alloy AA2024 in aqueous solution in the presence of caffeine. Journal of Solid State Electrochemistry, 14, 1255–1260. DOI: 10.1007/s10008-009-0928-9.

    Article  CAS  Google Scholar 

  • Sharma, M., Ramesh Kumar, A. V., & Singh, N. (2008). Electrochemical corrosion behavior of dental/implant alloys in saline medium. Journal of Materials Science: Materials in Medicine, 19, 2647–2653. DOI: 10.1007/s10856-007-3359-0.

    CAS  Google Scholar 

  • Spinelli, A., & Gonçalves, R. S. (1990). Electrochemical studies of the adsorption of propargyl alcohol on low carbon steel electrodes in H2SO4 solutions. Corrosion Science, 30, 1235–1246. DOI: 10.1016/0010-938x(90)90201-f.

    Article  CAS  Google Scholar 

  • Song, Y., Zhu, X., Wang, X., Che, J., & Du, Y. (2001). Anodic oxidation behavior of Al-Ti alloys in acidic media. Journal of Applied Electrochemistry, 31, 1273–1279. DOI: 10.1023/a:1012746926209.

    Article  CAS  Google Scholar 

  • Szauer, T., & Brandt, A. (1981). Adsorption of oleates of various amines on iron in acidic solution. Electrochimica Acta, 26, 1253–1256. DOI: 10.1016/0013-4686(81)85107-9.

    Article  Google Scholar 

  • Valero Vidal, C., Olmo Juan, A., & Igual Muñoz, A. (2010). Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration. Colloids and Surface B: Biointerfaces, 80, 1–11. DOI: 10.1016/j.colsurfb.2010.05.005.

    Article  CAS  Google Scholar 

  • Xu, J., Liu, W. J., & Xu, Z. (2005). Prediction of the property of corrosion resistance of a surface alloyed layer by using artificial neural networks. Surface Review and Letters, 12, 569–572. DOI: 10.1142/s0218625x05007451.

    Article  CAS  Google Scholar 

  • Živko-Babić, J., Lisjak, D., Ćurković, L., & Jakovac, M. (2008). Estimation of chemical resistance of dental ceramics by neural network. Dental Materials, 24, 18–27. DOI: 10.1016/j.dental.2007.01.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sutiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romas, M., Munoz, A.I., Mareci, D. et al. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy. Chem. Pap. 68, 1066–1078 (2014). https://doi.org/10.2478/s11696-014-0549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0549-3

Keywords

Navigation