Skip to main content
Log in

Evaluation of waste products in the synthesis of surfactants by yeasts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The highest yields of biosurfactants were obtained by: (i) Pseudozyma antarctica (107.2 g L−1) cultivated in a medium containing post-refining waste; (ii) Pseudozyma aphidis (77.7 g L−1); and (iii) Starmerella bombicola (93.8 g L−1) both cultivated in a medium with soapstock; (iv)Pichia jadinii (67.3 g L−1) cultivated in a medium supplemented with waste frying oil. It was found that the biosurfactant synthesis yield increased in all strains when the cell surface hydrophobicity reached 70–80 %, enabling the microbial cells to make good contact with hydrophobic substrates. The lowest surface tension of the post-cultivation medium was from 32.0 mN m−1 to 37.8 mN m−1. However, this parameter (which was also determined by a drop collapse assay) was of limited use in monitoring biosurfactant synthesis in this study. The crude glycerol was not a good substrate for biosurfactant synthesis although, in the case of P. aphidis, 67.4 g L−1 of biosurfactants were obtained after cultivation in the medium supplemented with glycerol fraction (GF2). In a low-cost medium containing soapstock and whey permeate or molasses, about 90 g L−1 of mannosylerythritol lipids were synthesised by P. aphidis and approximately 40 g L−1 by P. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamczak, M., & Bednarski, W. (2000a). Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnology Letters, 22, 313–316. DOI: 10.1023/a:1005634802997.

    Article  CAS  Google Scholar 

  • Adamczak, M., & Bednarski, W. (2000b). Properties and yield of synthesis of mannosylerythritol lipids by Candida antarctica. In S. Bielecki, J. Tramper, & J. Polak (Eds.), Food Biotechnology (pp. 229–234). Amsterdam, The Nertherlands: Elsevier.

    Google Scholar 

  • Ashby, R. D., & Solaiman, D. K. Y. (2010). The influence of increasing media methanol concentration on sophorolipid biosynthesis from glycerol-based feedstocks. Biotechnology Letters, 32, 1429–1437. DOI: 10.1007/s10529-010-0310-0.

    Article  CAS  Google Scholar 

  • Bednarski, W., Adamczak, M., Tomasik, J., & Płaszczyk, M. (2004). Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresource Technology, 95, 15–18. DOI:10.1016/j.biortech.2004.01.009.

    Article  CAS  Google Scholar 

  • Bednarski, W., Narwojsz, M., Adamczak, M., & Nawotka, R. (2006). Carbon-source-dependent synthesis and composition of biosurfactant synthesized by Pseudozyma antarctica. Environmental Biotechnology, 2, 31–36.

    Google Scholar 

  • Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2009). Application of bioemulsi-fiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407, 3634–3640. DOI:10.1016/j.scitotenv.2008.07.008.

    Article  CAS  Google Scholar 

  • Cameotra, S. S., & Makkar, R. S. (2004). Recent applications of biosurfactants as biological and immunological molecules. Current Opinion in Microbiology, 7, 262–266. DOI:10.1016/j.mib.2004.04.006.

    Article  CAS  Google Scholar 

  • Coombs, A. (2007). Glycerin bioprocessing goes green. Nature Biotechnology, 25, 953–954. DOI: 10.1038/nbt0907-953.

    Article  CAS  Google Scholar 

  • Daverey, A., & Pakshirajan, K. (2009). Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Research International, 42, 499–504. DOI:10.1016/j.foodres.2009.01.014.

    Article  CAS  Google Scholar 

  • Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

  • Felse, P. A., Shah, V., Chan, J., Rao, K. J., & Gross, R. A. (2007). Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme and Microbial Technology, 40, 316–323. DOI:10.1016/j.enzmictec.2006.04.013.

    Article  CAS  Google Scholar 

  • Fleurackers, S. J. J. (2006). On the use of waste frying oil in the synthesis of sophorolipids. European Journal of Lipid Science and Technology, 108, 5–12. DOI:10.1002/ejlt.200500237.

    Article  CAS  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  • Giannopoulos, A., Makri, A., & Aggelis, G. (2011). Production of biosurfactants from yeasts cultivated on glycerol. In FEBS Workshop: Microbial Lipids from Genomics to Lipidomics, May 13–15, 2010 (pp. 92). Vienna, Austria: Graz University of Technology.

    Google Scholar 

  • Glenns, R. N., & Cooper, D. G. (2006). Effect of substrate on sophorolipid properties. Journal of the American Oil Chemists’ Society, 83, 137–145. DOI: 10.1007/s11746-006-1186-y.

    Article  CAS  Google Scholar 

  • Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants — from energy-saving materials to gene delivery carriers —. Journal of Bioscience and Bioengineering, 94, 187–201. DOI: 10.1016/s1389-1723(02)80149-9.

    CAS  Google Scholar 

  • Kitamoto, D., Morita, T., Fukuoka, T., Konishi, M., & Imura, T. (2009). Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid & Interface Science, 14, 315–328. DOI:10.1016/j.cocis.2009.05.009.

    Article  CAS  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Pickford, R., Derrick, J. P., Lamers, G. E. M., Thomas-Oates, J. E., Lugtenberg, B. J. J., & Bloemberg, G. V. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Molecular Microbiology, 51, 97–113. DOI: 10.1046/j.1365-2958.2003.03751.x.

    Article  CAS  Google Scholar 

  • Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 1, 5. DOI: 10.1186/2191-0855-1-5.

    Article  Google Scholar 

  • Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007a). Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 104, 78–81. DOI: 10.1263/jbb.104.78.

    Article  CAS  Google Scholar 

  • Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007b). Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 74, 307–315. DOI: 10.1007/s00253-006-0672-3.

    Article  CAS  Google Scholar 

  • Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2009). Recent advances in the conversion of bioglycerol into value-added products. European Journal of Lipid Science and Technology, 111, 788–799. DOI:10.1002/ejlt.200800210.

    Article  CAS  Google Scholar 

  • Papanikolaou, S., Fick, M., & Aggelis, G. (2004). The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 79, 1189–1196. DOI: 10.1002/jctb.1103.

    Article  CAS  Google Scholar 

  • Pinzon, N. M., Aukema, K. G., Gralnick, J. A., & Wackett, L. P. (2011). Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format. mBio, 2, e00109–11. DOI: 10.1128/mbio.00109-11.

    Article  CAS  Google Scholar 

  • Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy, 57, 609–618. DOI: 10.1093/jac/dkl024.

    Article  CAS  Google Scholar 

  • Rosenberg, E., & Ron, E. Z. (1999). High- and low-molecularmass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154–162. DOI: 10.1007/s002530051502.

    Article  CAS  Google Scholar 

  • Rosenberg, M., Gutnick, D., & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33. DOI: 10.1111/j.1574-6968.1980.tb05599.x.

    Article  CAS  Google Scholar 

  • Rymowicz, W., Rywińska, A., & Gładkowski, W. (2008). Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chemical Papers, 62, 239–246. DOI: 10.2478/s11696-008-0018-y.

    Article  CAS  Google Scholar 

  • Siloto, R. M. P., Truksa, M., He, X. H., McKeon, T., & Weselake, R. J. (2009). Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids, 44, 963–973. DOI: 10.1007/s11745-009-3336-0.

    Article  CAS  Google Scholar 

  • Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, 99–121. DOI:10.1016/j.biotechadv.2006.10.004.

    Article  CAS  Google Scholar 

  • Smyth, T. J. P., Perfumo, A., Marchant, R., & Banat, I. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 3705–3723). Heidelberg, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  • Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., & Sarubbo, L. A. (2008). Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43, 912–917. DOI:10.1016/j.procbio.2008.04.013.

    Article  CAS  Google Scholar 

  • Takahashi, M., Morita, T., Wada, K., Hirose, N., Fukuoka, T., Imura, T., & Kitamoto, D. (2011). Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. Journal of Oleo Science, 60, 267–273.

    Article  CAS  Google Scholar 

  • Tang, S., Boehme, L., Lam, H., & Zhang, Z. S. (2009). Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochemical Engineering Journal, 43, 157–162. DOI:10.1016/j.bej.2008.09.020.

    Article  CAS  Google Scholar 

  • Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., & Kanzaki, H. (2007). Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresource Technology, 98, 1149–1153. DOI:10.1016/j.biortech.2005.10.045.

    Article  CAS  Google Scholar 

  • Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 45, 686–691. DOI: 10.1111/j.1472-765x.2007.02256.x.

    Article  CAS  Google Scholar 

  • Transparency Market Research (2012). Biosurfactants market — global scenario, raw material and consumption trends, industry analysis, size, share and forecasts, 2011–2018. Retreived December 18, 2012, from http://www.transparencymarketresearch.com/biosurfactants-market.html

    Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 24, 604–620. DOI: 10.1016/j.biotechadv.2006.08.001.

    Article  Google Scholar 

  • Vasileva-Tonkova, E., & Gesheva, V. (2004). Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Zeitschrift für Naturforschung C, Journal of Biosciences, 59, 140–145.

    CAS  Google Scholar 

  • Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In R. Sen (Ed.), Biosurfactants (pp. 1–13). New York, NY, USA: Springer.

    Chapter  Google Scholar 

  • Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142. DOI: 10.1007/s00253-004-1733-0.

    Article  CAS  Google Scholar 

  • Willumsen, P. A., & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation, 7, 415–423. DOI: 10.1007/bf00056425.

    Article  CAS  Google Scholar 

  • Yin, H., Qiang, J., Jia, Y., Ye, J. S., Peng, H., Qin, H. M., Zhang, N., & He, B. Y. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44, 302–308. DOI:10.1016/j.procbio.2008.11.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Adamczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzięgielewska, E., Adamczak, M. Evaluation of waste products in the synthesis of surfactants by yeasts. Chem. Pap. 67, 1113–1122 (2013). https://doi.org/10.2478/s11696-013-0349-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0349-1

Keywords

Navigation