Skip to main content
Log in

Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microbially produced biosurfactants are fast catching up due to their environment-friendly approach over chemical surfactants. But their commercial production is restricted due to poor economy of the production process which could be improved by using high yielding microbial strains and optimizing the process parameters. The present research was directed to optimize the biosurfactant production monitored in terms of oil displacement and emulsification (E24) index, using a promising yeast Meyerozyma guilliermondii YK32. Maximum oil displacement equaling 7.5 cm was obtained with olive oil at 8% (v/v) concentration as carbon source under shaking conditions (150 rpm). Diesel being a complex hydrocarbon was not utilized easily by yeast and showed poor biosurfactant production. Yeast extract at 1.5% (w/v) concentration yielded maximum biosurfactant as evident from maximum oil displacement and E24 index equal to 8.1 cm and 52.6%, respectively. Sodium chloride at the rate of 3% (w/v) supported maximum oil displacement (8.8 cm) using the production broth containing optimized carbon and nitrogen sources. Any increase beyond this level negatively influenced the biosurfactant production. The yield was at its maximum at 30 °C as a shift in temperature either to 35 °C or 25 °C decreased the oil displacement from 8.8 to 5.2 or 7.6 cm, respectively. At 40 °C, oil displacement was decreased to 2.5 cm. Biosurfactant production appeared to be sensitive to varying pH as evident from the E24 index as high as 67.3% at pH 6.0 as compared with 60.2%, 60.1%, and 52.4% at pH 5.0, 5.5, and 7.0, respectively. Yeast biomass yield equivalent to 10.3 g/L and 8.3 g/L was recorded at pH 6 and 7, respectively, during the production process. Elimination of shaking reduced the E24 index from 67.3 to 34.8% under optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamczak, M., & Bednarski, W. (2000). Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnology Letters, 22(4), 313–316.

    Article  CAS  Google Scholar 

  • Alejandro, C. S., Humberto, H. S., & María, J. F. (2011). Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. African Journal of Microbiology Research, 5, 2512–2523.

    CAS  Google Scholar 

  • Aparna, A., Srinikethan, G., & Smitha, H. (2012). Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids and Surfaces B: Biointerfaces, 95, 23–29.

    Article  CAS  Google Scholar 

  • Batista, S. B., Mounteer, A. H., Amorim, F. R., & Totola, M. R. (2006). Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresource Technology, 97, 868–875.

    Article  CAS  Google Scholar 

  • Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41(5), 653–673.

    Article  CAS  Google Scholar 

  • Camargo, F. P., Menezes, A. J. D., Tonello, P. S., Dos Santos, A. C. A., & Duarte, I. C. S. (2018). Characterization of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiology Letters, 365(10), fny098.

    Article  Google Scholar 

  • Chandran, P., & Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering, Science and Technology, 2, 6942–6953.

    Google Scholar 

  • Chandran, P., & Das, N. (2011). Characterization of sophorolipid biosurfactant produced by yeast species grown on diesel oil. International Journal of Science and Nature, 2, 63–71.

    CAS  Google Scholar 

  • Cooper, D. G., & Paddock, D. A. (1984). Production of a biosurfactant from Torulopsis bombicola. Applied and Environmental Microbiology, 47, 173–176.

    Article  CAS  Google Scholar 

  • Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    Article  CAS  Google Scholar 

  • Deshpande, M., & Daniels, L. (1995). Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresource Technology, 54, 143–150.

    Article  CAS  Google Scholar 

  • Felse, P. A., Shah, V., Chan, J., Rao, K. J., & Gross, R. A. (2007). Sophorolipid biosynthesis by the yeast Candida bombicola from industrial fatty acid residues. Enzyme and Microbial Technology, 40(2), 499–504.

    Article  Google Scholar 

  • Guerfali, M., Ayadi, I., Mohamed, N., Ayadi, W., Belghith, H., Bronze, M. R., Ribeiro, M.H. and & Gargouri, A. (2019). Triacylglycerols accumulation and glycolipids secretion by the oleaginous yeast Rhodotorula babjevae Y-SL7: structural identification and biotechnological applications. Bioresource Technology, 273, 326-334.

  • Hua, Z., Chen, J., Lun, S., & Wang, X. (2003). Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 3, 4143–4150.

    Article  Google Scholar 

  • Joshi, P. A., & Shekhawat, D. B. (2014). Screening and isolation of biosurfactant producing bacteria from petroleum contaminated soil. European Journal of Experimental Biology, 4(4), 164–169.

    Google Scholar 

  • Kanga, S., Bonner, J., Page, C., Mills, M., & Autenrieth, R. (1997). Solubilization of naphthalene and methyl-substituted napthalanes from crude oil using biosurfactants. Environmental Science & Technology, 31, 556–561.

    Article  CAS  Google Scholar 

  • Kaur, K., Sangwan, S., & Kaur, H. (2017). Biosurfactant production by yeasts isolated from hydrocarbon polluted environments. Environmental Monitoring and Assessment, 189(12), 603.

    Article  Google Scholar 

  • Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2011). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis spp. B4. Desalination, 285, 198–204.

    Article  Google Scholar 

  • Khopade, A., Ren, B., Liu, X. Y., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and characterization of biosurfactant from marine Streptomyces species B3. Journal of Colloid and Interface Science, 367, 311–318.

    Article  CAS  Google Scholar 

  • Kiran, G. S., Hema, T. A., Gandhimathi, R., Selvin, J., Thomas, T. A., Rajeetha Ravji, T., & Natarajaseenivasan, K. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids and Surfaces B: Biointerfaces, 73, 250–256.

    Article  CAS  Google Scholar 

  • Konishi, M., Fukuoka, T., Morita, T., Imura, T., & Kitamoto, D. (2008). Production of new types of sophorolipids by Candida batistae. Journal of Oleo Science, 57, 359–369.

    Article  CAS  Google Scholar 

  • Konishi, M., Morita, T., Fukuoka, T., Imura, T., Uemura, S., Iwabuchi, H., & Kitamoto, D. (2018). Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methyl esters by Candida floricola. Journal of Oleo Science, 67(4), 489–496.

    Article  CAS  Google Scholar 

  • Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2008). Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. Journal of Bioscience and Bioengineering, 105, 493–502.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12(1), 633–654.

    Article  Google Scholar 

  • Rahman, K. S. M., Banat, I. M., Thahira, J., Thayumanavan, T., & Lakshmanaperumalsamy, P. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresource Technology, 81(1), 25–32.

    Article  CAS  Google Scholar 

  • Rodrigues, L. R., Teixeira, J. A., Mei, H. C., & Oliveira, R. (2006). Physiochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49, 79–86.

    Article  CAS  Google Scholar 

  • Sarubbo, L. A., Farias, C. B., & Campos-Takaki, G. M. (2007). Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Current Microbiology, 54(1), 68–73.

    Article  CAS  Google Scholar 

  • Thaniyavarn, J., Chianguthai, T., Sangvanich, P., Roongsawang, N., Washio, K., Morikawa, M., & Thaniyavarn, S. (2008). Production of sophorolipid biosurfactant by Pichia anomala. Bioscience, Biotechnology, and Biochemistry, 72, 2061–2068.

    Article  CAS  Google Scholar 

  • Thanomsub, B., Watcharachaipong, T., Chotelersak, K., Arunrattiyakorn, P., Nitoda, T., & Kanzaki, H. (2004). Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. Journal of Applied Microbiology, 96, 588–592.

    Article  CAS  Google Scholar 

  • Zinjarde, S. S., & Pant, A. (2002). Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Journal of Basic Microbiology, 42, 67–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sangwan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Sangwan, S. & Kaur, H. Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32. Environ Monit Assess 191, 531 (2019). https://doi.org/10.1007/s10661-019-7665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7665-z

Keywords

Navigation