Skip to main content
Log in

Separation of alicyclic and aromatic hydrocarbons on a PLOT column coated with 3-benzylketoiminepropyl group

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An interpretation of specific electron-donor-acceptor interactions between the adsorbent coating the walls of a capillary column and adsorbates from the groups of alicyclic and aromatic hydrocarbons is proposed. The adsorbent was based on silica the surface of which was modified with silane containing 3-benzylketoimine groups to improve its adsorption properties. The columns studied had walls coated with 3-benzylketoimine groups, and Cu(II) chloride complexes or with Ni(II) chloride complexes. The adsorbate-adsorbent interactions were interpreted on the basis of the Kovats retention index, specific retention volume, molecular retention index, and ΔM e values. The influence of particular elements of spatial structure and the positions of double bonds in the adsorbate molecule was evaluated on the modelling calculations based on the quantitative structure-retention relationships. The introduction of transition metal ions in the form of complexes into the adsorbents studied increased the strength of the interactions between the adsorption layer of the capillary column and the adsorbate molecules. The increased strength of the interactions was accompanied by increased selectivity of the columns with regard to a group of alicyclic and aromatic hydrocarbons. The analytical performance of the columns thus obtained was compared with that of a commercial column coated with the 100 % dimethyl polysiloxane phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Evans, M. B. (1978). Gas chromatography in qualitative analysis. Part 14. Molecular retention index as an alternative system for the characterization of gas chromatographic stationary phases. Chromatographia, 11, 183–187. DOI: 10.1007/bf02302389.

    Article  CAS  Google Scholar 

  • Gil-Av, E., & Schurig, V. (1971). Gas chromatography of monoolefins with stationary phases containing rhodium coordination compounds. Analytical Chemistry, 43, 2030–2033. DOI: 10.1021/ac60308a015.

    Article  CAS  Google Scholar 

  • Gonzalez, F. R., Alessandrini, J. L., & Nardillo, A. M. (1998). Considerations on the dependence of gas-liquid chromatographic retention of n-alkanes with the carbon number. Journal of Chromatography A, 810, 105–117. DOI: 10.1016/s0021-9673(98)00231-3.

    Article  CAS  Google Scholar 

  • Gonzalez, F. R., Alessandrini, J. L., & Nardillo, A. M. (1999). Revision of a theoretical expression for gas-liquid chromatographic retention. Journal of Chromatography A, 852, 583–588. DOI: 10.1016/s0021-9673(99)00614-7.

    Article  CAS  Google Scholar 

  • Harvey, S. D., & Wenzel, T. J. (2008). Selective gas-phase capture of explosives on metal β-diketonate polymers. Journal of Chromatography A, 1192, 212–217. DOI: 10.1016/j.chroma.2008.03.078.

    Article  CAS  Google Scholar 

  • Héberger, K. (2007). Quantitative structure-(chromatographic) retention relationships. Journal of Chromatography A, 1158, 273–305. DOI: 10.1016/j.chroma.2007.03.108.

    Article  Google Scholar 

  • Héberger, K., & Kowalska, T. (1999). Thermodynamic significance of boiling point correlations for alkylbenzenes in gas chromatography. Extension of Trouton’s rule. Journal of Chromatography A, 845, 13–20. DOI: 10.1016/s0021-9673(99)00289-7.

    Article  Google Scholar 

  • Heinzen, V. E. F., & Yunes, R. A. (1996). Using topological indices in the prediction of gas chromatographic retention indices of linear alkylbenzene isomers. Journal of Chromatography A, 719, 462–467. DOI: 10.1016/0021-9673(95)00707-5.

    Article  CAS  Google Scholar 

  • Ivanciuc, O., Ivanciuc, T., Klein, D. J., Seitz, W. A., & Balaban, A. T. (2001). Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors. SAR and QSAR in Environmental Research, 11, 419–452. DOI: 10.1080/10629360108035362.

    Article  CAS  Google Scholar 

  • Kaliszan, R. (1987). Quantitative structure-chromatographic retention relationship. New York, NY, USA: Wiley.

    Google Scholar 

  • Khuhawar, M. Y., Memon, A. A., & Bhanger, M. I. (1995). Nickel(II) chelates of some tetradentate Schiff bases as stationary phases for gas chromatography. Journal of Chromatography A, 715, 366–371. DOI: 10.1016/0021-9673(95)00618-w.

    Article  CAS  Google Scholar 

  • Kowalska, E. T., & Kowalski, W. J. (1984). Gas chromatographic and NMR spectroscopic study of the interactions between the tris β-diketone chelates of europium and aliphatic nucleophiles. Chromatographia, 19, 301–303. DOI: 10.1007/bf02687759.

    Article  CAS  Google Scholar 

  • Laghari, A. J., Khuhawar, M. Y., & Ali, Z. M. (2007). Palladium(II) chelate of tetradentate Schiff base as mixed stationary phase for gas chromatography. Journal of Separation Science, 30, 359–366. DOI: 10.1002/jssc.200600277.

    Article  CAS  Google Scholar 

  • Lin, Z., Xu, J., Liu, S., & Li, Z. (2001). Estimation and prediction of gas chromatography retention index for polycyclic aromatic hydrocarbons. Fenxi Huaxue, 29, 889.

    Google Scholar 

  • Liu, S., Yin, C., Cai, S., & Li, Z. (2002). Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons. Chemometrics and Intelligent Laboratory Systems, 61, 3–15. DOI: 10.1016/s0169-7439(01)00146-0.

    Article  CAS  Google Scholar 

  • Olivero, J., Gracia, T., Payares, P., Vivas, R., Díaz, D., Daza, E., & Geerlings, P. (1997). Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil. Journal of Pharmaceutical Sciences, 86, 625–630. DOI: 10.1021/js960196u.

    Article  CAS  Google Scholar 

  • Schurig, V. (1980). Resolution of enantiomers and isotopic compositions by selective complexation gas chromatography on metal complexes. Chromatographia, 13, 263–270. DOI: 10.1007/bf02265639.

    Article  CAS  Google Scholar 

  • Schurig, V., Bear, J. L., & Zlatkis, A. (1972). Rhodium(II) carboxylates as new selective stationary phases in gasliquid chromatography. Chromatographia, 5, 301–304. DOI: 10.1007/bf02310747.

    Article  CAS  Google Scholar 

  • Schurig, V., Chang, R. C., Zlatkis, A., Gil-Av, E., & Mikeš, F. (1973). Application of dicarbonyl-rhodium-trifluoroacetyld-camphorate to special problems of olefin analysis by gasliquid chromatography. Chromatographia, 6, 223–225. DOI: 10.1007/bf02311729.

    Article  CAS  Google Scholar 

  • Škrbić, B., Djurišić-Mladenović, N., & Cvejanov, J. (2004). Discrimination between linear and non-linear models for retention indices of polycyclic aromatic hydrocarbons in the socalled Lee’s scale. Chemometrics and Intelligent Laboratory Systems, 72, 167–171. DOI: 10.1016/j.chemolab.2004.01.011.

    Article  Google Scholar 

  • Škrbić, B., & Onjia, A. (2006). Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. Journal of Chromatography A, 1108, 279–284. DOI: 10.1016/j.chroma.2006.01.080.

    Article  Google Scholar 

  • Slizhov, Y. G., & Gavrilenko, M. A. (2001). Gas-chromatographic properties of silochrom with a surface layer of nickel dimethylglyoximate and acetylacetonate complexes. Journal of Analytical Chemistry, 56, 538–541. DOI: 10.1023/a:1016628610463.

    Article  CAS  Google Scholar 

  • Slizhov, Y. G., & Gavrilenko, M. A. (2002). Complexation with metal chelates at the phase interface in gas chromatography. Russian Journal of Coordination Chemistry, 28, 736–752. DOI: 10.1023/a:1020407629841.

    Article  CAS  Google Scholar 

  • Sremac, S., Škrbić, B., & Onjia, A. (2005). Artificial neural network prediction of quantitative structure — retention relationships of polycyclic aromatic hydocarbons in gas chromatography. Journal of the Serbian Chemical Society, 70, 1291–1300. DOI: 10.2298/jsc0511291s.

    Article  CAS  Google Scholar 

  • Sutter, J. M., Peterson, T. A., & Jurs, P. C. (1997). Prediction of gas chromatographic retention indices of alkylbenzenes. Analytica Chimica Acta, 342, 113–122. DOI: 10.1016/s0003-2670(96)00578-8.

    Article  CAS  Google Scholar 

  • Wawrzyniak, R. (2009). Quantitative relationship and application of 3-benzylketoimine metal dichlorides in the analysis of volatile hydrocarbons. Journal of Separation Science, 32, 1415–1424. DOI: 10.1002/jssc.200800616.

    Article  CAS  Google Scholar 

  • Wawrzyniak, R., & Wasiak, W. (2003). New method for bonding an adsorbent film to the walls of capillary columns. Journal of Separation Science, 26, 1219–1224. DOI: 10.1002/jssc.200301430.

    Article  CAS  Google Scholar 

  • Wawrzyniak, R., & Wasiak, W. (2004). Silica modified with ketoimine group-containing silane as an adsorbent in capillary columns. Chromatographia, 59, 205–211. DOI: 10.1365/s103 37-003-157-9.

    CAS  Google Scholar 

  • Wawrzyniak, R., & Wasiak, W. (2005). Ketoimine modified silica as an adsorbent for gas chromatographic analysis of olefins. Journal of Separation Science, 28, 2454–2462. DOI: 10.1002/jssc.200400035.

    Article  CAS  Google Scholar 

  • Wawrzyniak, R., & Wasiak, W. (2011). Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane. Chemical Papers, 65, 626–635. DOI: 10.2478/s11696-011-0060-z.

    Article  CAS  Google Scholar 

  • Yan, A., & Hu, Z. (2001). Linear and non-linear modeling for the investigation of gas chromatography retention indices of alkylbenzenes on Cit.A-4, SE-30 and Carbowax 20M. Analytica Chimica Acta, 433, 145–154. DOI: 10.1016/s0003-2670(00)01379-9.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Yuan, X. R., Fu, R. N., Li, F., Zhang, J., Guo, B. N., & Wang, Z. G. (1998). Separation properties of bis(β-diketonato)-copper(II) complexes in capillary gas chromatography. Journal of Chromatography A, 809, 65–73. DOI: 10.1016/s0021-9673(98)00190-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Wawrzyniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wawrzyniak, R. Separation of alicyclic and aromatic hydrocarbons on a PLOT column coated with 3-benzylketoiminepropyl group. Chem. Pap. 66, 626–635 (2012). https://doi.org/10.2478/s11696-012-0173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0173-z

Keywords

Navigation