Skip to main content
Log in

Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Antimicrobial packaging protects the product from the external environment and microbial contamination, conferring numerous advantages on human health. Interest in biopolymers as packaging materials has considerably increased recently. Bacterial cellulose is an interesting biomaterial produced as nanofibrils by Acetobacter xylinium and is a promising candidate due to its remarkable properties. New composite materials with antimicrobial properties were developed in this work, containing poly(vinyl alcohol) (PVA) as polymer matrix and ground bacterial cellulose (BC) as reinforcing fibres. Sorbic acid was used as an antimicrobial agent because it is a preservative recognised in the food industry. The materials obtained were studied using Fourier-transformed infrared spectroscopy (FTIR). The swelling rate of the composites was also measured. Release experiments of sorbic acid from the composite films into water were performed and the mass transfer phenomena were investigated using Fick’s law of diffusion. The antimicrobial effect was tested against Escherichia coli K12-MG1655. The results obtained indicated that the new biocomposite films could be promising antimicrobial food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buonocore, G. G., Del Nobile, M. A., Panizza, A., Bove, S., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68, 1365–1370. DOI: 10.1111/j.1365-2621.2003.tb09651.x.

    Article  CAS  Google Scholar 

  • Choi, J. H., Choi, W. Y., Cha, D. S., Chinnan, M. J., Park, H. J., Lee, D. S., & Park, J. M. (2005). Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT-Food Science and Technology, 38, 417–423. DOI: 10.1016/j.lwt.2004.07.004.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion. Bristol, UK: Oxford University Press.

    Google Scholar 

  • Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M., Jr. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8, 1–12. DOI: 10.1021/bm060620d.

    Article  CAS  Google Scholar 

  • Del Nobile, M. A., Conte, A., Incoronato, A. L., & Panza, O. (2008). Antimicrobial efficacy and release kinetics of thymol from zein films. Journal of Food Engineering, 89, 57–63. DOI: 10.1016/j.jfoodeng.2008.04.004.

    Article  Google Scholar 

  • Flores, S., Haedo, A. S., Campos, C., & Gerschenson, L. (2007). Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. European Food Research and Technology, 225, 375–384. DOI: 10.1007/s00217-006-0427-5.

    Article  CAS  Google Scholar 

  • Gemili, S., Yemenicioğlu, A., & Altınkaya, S. (2009). Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food Engineering, 90, 453–462. DOI: 10.1016/j.jfoodeng.2008.07.014.

    Article  Google Scholar 

  • Han, J. H. (2003). Antimicrobial food packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 50–70). Cambridge, UK: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Han, J. H., & Floros, J. D. (2007). Active packaging: A nonthermal process. In G. Tewari, & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 167–183). Ames, IA, USA: Blackwell Publishing.

    Google Scholar 

  • Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose-a masterpiece of nature’s arts. Journal of Materials Science, 35, 261–270.

    Article  CAS  Google Scholar 

  • Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101–106. DOI: 10.1016/S0141-3910(97)00197-3.

    Article  CAS  Google Scholar 

  • Kačuráková, M., Smith, A. C., Gidley, M. J., & Wilson, R. H. (2002). Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research, 337, 1145–1153. DOI: 10.1016/S0008-6215(02)00102-7.

    Article  Google Scholar 

  • Markin, V. S., Iordanskii, A. L., & Kosenko, R. Yu. (1998). Benzoic acid release from strongly swelling PVA films. Pharmaceutical Chemistry Journal, 3, 54–56. DOI: 10.1007/BF02539231.

    Google Scholar 

  • Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10, 222–227. DOI: 10.1016/j.ifset.2008.11.010.

    Article  CAS  Google Scholar 

  • Mastromatteo, M., Lecce, L., De Vietro, N., Favia, P., & Del Nobile, M. A. (2011). Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release of lysozyme from PVOH monolayer film. Journal of Food Engineering, 104, 373–379. DOI: 10.1016/j.jfoodeng.2010.12.032.

    Article  CAS  Google Scholar 

  • Min, S., & Krochta, J. M. (2007). Edible coatings containing bioactive antimicrobial agents. In J. H. Han (Ed.), Packaging for nonthermal processing of food (pp. 29–52). Ames, IA, USA: Blackwell Publishing and the Institute of Food Technologists.

    Chapter  Google Scholar 

  • Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10, 52–68. DOI: 10.1016/S0924-2244(99)00019-9.

    Article  CAS  Google Scholar 

  • Redl, A., Gontard, N., & Guilbert, S. (1996). Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. Journal of Food Science, 61, 116–120. DOI:10.1111/j.1365-2621.1996.tb14739.x.

    Article  CAS  Google Scholar 

  • Rothstein, S. N., Federspiel, W. J., & Little, S. R. (2009). A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 30, 1657–1664. DOI: 10.1016/j.biomaterials.2008.12.002.

    Article  CAS  Google Scholar 

  • Souza, M. P., Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., Porto, A. L. F., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2010). Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes. Chemical Papers, 64, 475–481. DOI: 10.2478/s11696-010-0017-7.

    Article  CAS  Google Scholar 

  • Uz, M., & Altınkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT — Food Science and Technology. Article in press. DOI: 10.1016/j.lwt.2011.05.003.

  • Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200. DOI: 10.1023/A:1009272904582.

    Article  CAS  Google Scholar 

  • Yoshida, C. M. P., Bastos, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT — Food Science and Technology, 43, 584–589. DOI: 10.1016/j.lwt.2009.10.005.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q., Gao, Q.-C., Li, Z.-H., Wang, F.-G., & Zhang, H. (2010). Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer. Chemical Papers, 64, 776–782. DOI:10.2478/s11696-010-0069-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana-Mihaela Dobre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobre, LM., Stoica-Guzun, A., Stroescu, M. et al. Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem. Pap. 66, 144–151 (2012). https://doi.org/10.2478/s11696-011-0086-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0086-2

Keywords

Navigation