Skip to main content
Log in

Optical characterisation of organosilane-modified nanocrystalline diamond films

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

We report on an optical characterisation of nanocrystalline diamond films photochemically functionalised with the organosilane-coupling agent, N 1-(3-(trimethoxysilyl)propyl)hexane-1,6-diamine (alternative names: N-(6-aminohexyl)aminopropyl-trimethoxysilane, (3-(6-aminohexylamino)propyl) trimetoxysilane, AHAPS). The presence and homogeneity of the organosilane layers were detected by fluorescence microscopy and infrared reflectance-absorbance spectroscopy. The results indicated that a homogeneous surface coverage with organosilane layers was achieved on diamond surfaces which were modified either by hydrogen or by oxygen plasma treatment. The functionalised nanocrystalline diamonds present a promising solution in future biosensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacakova, L., Grausova, L., Vacik, J., Fraczek, A., Blazewicz, S., Kromka, A., Vanecek, M., & Svorcik, V. (2007). Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diamond and Related Materials, 16, 2133–2140. DOI: 10.1016/j.diamond.2007.07.015.

    Article  CAS  Google Scholar 

  • Christiaens, P., Vermeeren, V., Wenmackers, S., Daenen, M., Haenen, K., Nesládek, M., vandeVen, M., Ameloot, M., Michiels, L., & Wagner, P. (2006). EDC-mediated DNA attachment to nanocrystalline CVD diamond films. Biosensors & Bioelectronics, 22, 170–177. DOI: 10.1016/j.bios.2005.12.013.

    Article  CAS  Google Scholar 

  • Davydova, M., Kromka, A., Exnar, P., Stuchlik, M., Hruska, K., Vanecek, M., & Kalbac, M. (2009). Selective detection of phosgene by nanocrystalline diamond layer. Physica Status Solidi A, 206, 2070–2073. DOI: 10.1002/pssa.200982216.

    Article  CAS  Google Scholar 

  • Füner, M., Wild, C., & Koidl, P. (1998). Novel microwave plasma reactor for diamond synthesis. Applied Physics Letters, 72, 1149–1151. DOI: 10.1063/1.120997.

    Article  Google Scholar 

  • Gruen, D. M. (1999). Nanocrystalline diamond films. Annual Review of Materials Science, 29, 211–259. DOI: 10.1146/annurev.matsci.29.1.211.

    Article  CAS  Google Scholar 

  • Kneuer, C., Sameti, M., Haltner, E. G., Schiestel, T., Schirra, H., Schmidt, H., & Lehr, C.-M. (2000). Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. In ternational Journal of Pharmaceutics, 196, 257–261. DOI: 10.1016/S0378-5173(99)00435-4.

    Article  CAS  Google Scholar 

  • Kozak, H., Kromka, A., Babchenko, O., & Rezek, B. (2010). Directly grown nanocrystalline diamond field-effect transistor microstructures. Sensor Letters, 8, 482–487. DOI: 10.1166/sl2010.1298.

    CAS  Google Scholar 

  • Kozak, H., Kromka, A., Ledinsky, M., & Rezek, B. (2009a). Enhancing nanocrystalline diamond surface conductivity by deposition temperature and chemical post-processing. Physica Status Solidi A, 206, 276–280. DOI: 10.1002/pssa.200824355.

    Article  CAS  Google Scholar 

  • Kozak, H., Kromka, A., Ukraintsev, E., Houdkova, J., Ledinsky, M., Vaněček, M., & Rezek, B. (2009b). Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity. Diamond and Related Materials, 18, 722–725. DOI: 10.1016/j.diamond.2009.02.010.

    Article  CAS  Google Scholar 

  • Kromka, A., Rezek, B., Remes, Z., Michalka, M., Ledinsky, M., Zemek, J., Potmesil, J., & Vanecek, M. (2008). Formation of continuous nanocrystalline diamond layers on glass and silicon at low temperatures. Chemical Vapor Deposition, 14, 181–186. DOI: 10.1002/cvde.200706662.

    Article  CAS  Google Scholar 

  • Landstrass, M. I., & Ravi, K. V. (1989). Resistivity of chemical vapor deposited diamond films. Applied Physics Letters, 55, 975–977. DOI: 10.1063/1.101694.

    Article  CAS  Google Scholar 

  • Lud, S. Q., Steenackers, M., Jordan, R., Bruno, P., Gruen, D. M., Feulner, P., Garrido, J. A., & Stutzmann, M. (2006). Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond. Journal of the American Chemical Society, 128, 16884–16891. DOI: 10.1021/ja0657049.

    Article  Google Scholar 

  • Maier, F., Riedel, M., Mantel, B., Ristein, J., & Ley, L. (2000). Origin of surface conductivity in diamond. Physical Review Letters, 85, 3472–3475. DOI: 10.1103/PhysRevLett.85.3472.

    Article  CAS  Google Scholar 

  • Maitra, U., Gomathi, A., & Rao, C. N. R. (2008). Covalent and noncovalent functionalisation and solubilisation of nanodiamond. Journal of Experimental Nanoscience, 3, 271–278. DOI: 10.1080/17458080802574155.

    Article  CAS  Google Scholar 

  • Nebel, C. E., Kato, H., Rezek, B., Shin, D., Takeuchi, D., Watanabe, H., & Yamamoto, T. (2006). Electrochemical properties of undoped hydrogen terminated CVD diamond. Diamond and Related Materials, 15, 264–268. DOI: 10.1016/j.diamond.2005.08.012.

    Article  CAS  Google Scholar 

  • Potocky, S., Kromka, A., Potmesil, J., Remes, Z., Vorlicek, V., Vanecek, M., & Michalka, M. (2007). Investigation of nanocrystalline diamond films grown on silicon and glass at substrate temperature below 400°C. Diamond and Related Materials, 16, 744–747. DOI: 10.1016/j.diamond.2006.11. 028.

    Article  CAS  Google Scholar 

  • Qureshi, A., Gurbuz, Y., Howell, M., Kang, W. P., & Davidson, J. L. (2010). Nanocrystalline diamond film for biosensor applications. Diamond and Related Materials, 19, 457–461. DOI: 10.1016/j.diamond.2010.01.012.

    Article  CAS  Google Scholar 

  • Remes, Z., Kozak, H., Babchenko, O., Ukraintsev, E., Rezek, B., & Kromka, A. (2010). Grazing angle reflectance spectroscopy of organic monolayers on nanocrystalline diamond films. In Proceedings of Diamond 2010, The 21st European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, 5–9 September 2010. Budapest, Hungary.

  • Remes, Z., Kromka, A., Kozak, H., Vanecek, M., Haenen, K., & Wenmackers, S. (2009). The infrared optical absorption spectra of the functionalized nanocrystalline diamond surface. Diamond and Related Materials, 18, 772–775. DOI: 10.1016/j.diamond.2008.11.025.

    Article  CAS  Google Scholar 

  • Remes, Z., Kromka, A., Vanecek, M., Grinevich, A., Hartmannova, H., & Kmoch, S. (2007). The RF plasma surface chemical modification of nanodiamond films grown on glass and silicon at low temperature. Diamond and Related Materials, 16, 671–674. DOI: 10.1016/j.diamond.2006.11.100.

    Article  CAS  Google Scholar 

  • Rezek, B., Shin, D., Watanabe, H., & Nebel, C. E. (2007). Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor. Sensors and Actuators B: Chemical, 122, 596–599. DOI: 10.1016/j.snb.2006.07.004.

    Article  Google Scholar 

  • Rezek, B., Watanabe, H., & Nebel, C. E (2006a). High carrier mobility on hydrogen terminated 〈100〉 diamond surfaces. Applied Physics Letters, 88, 042110. DOI: 10.1063/1.2168497.

    Article  Google Scholar 

  • Rezek, B., Watanabe, H., Shin, D., Yamamoto, T., & Nebel, C. E. (2006b). Ion-sensitive field effect transistor on hydrogenated diamond. Diamond and Related Materials, 15, 673–677. DOI: 10.1016/j.diamond.2005.12.023.

    Article  CAS  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts (3rd ed.). Chichester, UK: Wiley.

    Google Scholar 

  • Stutzmann, M., Garrido, J. A., Eickhoff, M., & Brandt, M. S. (2006). Direct biofunctionalization of semiconductors: A survey. Physica Status Solidi A, 203, 3424–3437. DOI: 10.1002/pssa.200622512.

    Article  CAS  Google Scholar 

  • Sussmann, R. S. (Ed.) (2009). CVD diamond for electronic devices and sensors. Chichester, UK: Wiley.

    Google Scholar 

  • Vermeeren, V., Bijnens, N., Wenmackers, S., Daenen, M., Haenen, K., Williams, O. A., Ameloot, M., vandeVen, M., Wagner, P., & Michiels, L. (2007). Towards a real-time, label-free, diamond-based DNA sensor. Langmuir, 23, 13193–13202. DOI: 10.1021/la702143d.

    Article  CAS  Google Scholar 

  • Wang, J., Firestone, M. A., Auciello, O., & Carlisle, J. A. (2004). Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir, 20, 11450–11456. DOI: 10.1021/la048740z.

    Article  CAS  Google Scholar 

  • Wen, K., Maoz, R., Cohen, H., Sagiv, J., Gibaud, A., Desert, A., & Ocko, B. M. (2008). Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS Nano, 2, 579–599. DOI: 10.1021/nn800011t.

    Article  CAS  Google Scholar 

  • Wenmackers, S., Christiaens, P., Daenen, M., Haenen, K., Nesládek, M., van deVen, M., Vermeeren, V., Michiels, L., Ameloot, M., & Wagner, P. (2005). DNA attachment to nanocrystalline diamond films. Physica Status Solidi A, 202, 2212–2216. DOI: 10.1002/pssa.200561932.

    Article  CAS  Google Scholar 

  • Wong, S. S. (1991). Chemistry of protein conjugation and cross-linking. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Yang, N., Uetsuka, H., Watanabe, H., Nakamura, T., & Nebel, C. E. (2008). Photochemical attachment of aminelayers on H-terminated undoped single crystalline CVD diamonds. Diamond and Related Materials, 17, 1376–1379. DOI: 10.1016/j.diamond.2008.01.065.

    Article  CAS  Google Scholar 

  • Yang, W., & Hamers, R. J. (2004). Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film. Applied Physics Letters, 85, 3626–3628. DOI: 10.1063/1.1808885.

    Article  CAS  Google Scholar 

  • Yang, W., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J. E., Gruen, D. M., Knickerbocker, T., Lasseter, T. L., Russell, J. N., Jr., Smith, L. M., & Hamers, R. J. (2002). DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Materials, 1, 253–257. DOI: 10.1038/nmat779.

    Article  CAS  Google Scholar 

  • Zemek, J., Houdkova, J., Lesiak, B., Jablonski, A., Potmesil, J., & Vanecek, M. (2006). Electron spectroscopy of nanocrystalline diamond surfaces. Journal of Optoelectronics and Advanced Materials, 8, 2133–2138.

    CAS  Google Scholar 

  • Zhang, G.-J., Song, K.-S., Nakamura, Y., Ueno, T., Funatsu, T., Ohdomari, I., & Kawarada, H. (2006). DNA micropatterning on polycrystalline diamond via one-step direct amination. Langmuir, 22, 3728–3734. DOI: 10.1021/la050883d.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halyna Kozak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozak, H., Remes, Z., Kromka, A. et al. Optical characterisation of organosilane-modified nanocrystalline diamond films. Chem. Pap. 65, 36–41 (2011). https://doi.org/10.2478/s11696-010-0095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0095-6

Keywords

Navigation