Skip to main content
Log in

Comparative study of CTAB adsorption on bituminous coal and clay mineral

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Adsorption of cetyltrimethylammonium bromide (CTAB) onto bituminous coal (BC) and a clay mineral, montmorillonite (MMT), was studied. Simultaneous measurements of the CTAB adsorption and zeta potential determination of the adsorption suspensions were carried out. The adsorption isotherms were found to be of the typical Langmuir type; values of the CTAB adsorption capacities were calculated (a m = 0.65 mmol g−1 for coal and a m = 3.24 mmol g−1 for MMT). The shape of the adsorption isotherms was correlated with zeta potential values at the adsorption equilibrium. The adsorption properties of both sorbents were studied by voltammetry on carbon paste electrodes (CPE) modified with coal-CTAB and MMT-CTAB system, respectively. Open circuit sorption with differential pulse voltammetry was performed in order to compare the sorption properties of the systems with the unmodified sorbents. The Cu2+ adsorption on BC and MMT decreased to approximately 50 % and 40 %, respectively. The surface adsorption mechanism of CTAB on coal based on hydrophilic interactions was proposed. In the case of montmorillonite, the CTAB intercalation is expected via ion exchange into the inter-layer space forming a double- or triple-layer arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Başar, C. A., Karagunduz, A., Keskinler, B., & Cakici, A. (2003). Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon (PAC). Applied Surface Science, 218, 169–174. DOI: 10.1016/S0169-4332(03)00576-2.

    Google Scholar 

  • Betega de Paiva, L., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24. DOI: 10.1016/j.clay.2008.02.006.

    Article  CAS  Google Scholar 

  • Crawford, R. J., & Mainwaring, D. E. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel, 80, 313–320. DOI: 10.1016/S0016-2361(00)00110-1.

    Article  CAS  Google Scholar 

  • Gallardo-Moreno, A. M., González-García, C. M., González-Martín, M. L., & Bruque, J. M. (2004). Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 249, 57–62. DOI: 10.1016/j.colsurfa.2004.08.051.

    Article  CAS  Google Scholar 

  • Gu, T., Zhu, B. Y., & Rupprecht, H. (1992). Surfactant adsorption and surface micellizations. Progress in Colloid and Polymer Science, 88, 74–85. DOI: 10.1007/BFb0114420.

    Article  CAS  Google Scholar 

  • Hernández, M., Fernández, L., Borrás, C., Mostany, J., & Carrero, H. (2007). Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol. Analytica Chimica Acta, 597, 245–256. DOI: 10.1016/j.aca.2007.06.010.

    Article  Google Scholar 

  • Juang, R.-S., & Wu, W.-L. (2002). Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. Journal of Colloid and Interface Science, 249, 22–29. DOI: 10.1006/jcis.2002.8240.

    Article  CAS  Google Scholar 

  • Kooli, F., Liu, Y., Alshahateet, S. F., Messali, M., & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Applied Clay Science, 43, 357–363. DOI: 10.1016/j.clay.2008.10.006.

    Article  CAS  Google Scholar 

  • Liu, X. Lu, R., Wang, R. C., Zhou, H., & Xu, S. (2007). Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study. Clays and Clay Minerals, 55, 554–564. DOI: 10.1346/CCMN.2007.0550602.

    Article  CAS  Google Scholar 

  • Maršálek, R., & Taraba, B. (2008). Adsorption of the SDS on coal. Progress in Colloid and Polymer Science, 135, 163–168. DOI: 10.1007/978-3-540-85134-9.

    Google Scholar 

  • Mishra, S. K., Kanungo, S. B., & Rajeev (2003). Adsorption of sodium dodecyl benzenesulfonate onto coal. Journal of Colloid and Interface Science, 267, 42–48. DOI: 10.1016/S0021-9797(03)00553-8.

    Article  CAS  Google Scholar 

  • Navrátilová, Z. (2009). Coal as a new carbon paste electrode modifier with sorption properties. Electroanalysis, 21, 1758–1762. DOI: 10.1002/elan.200904657.

    Article  Google Scholar 

  • Navrátilová, Z., & Kula, P. (2000). Cation and anion exchange on clay modified electrodes. Journal of Solid State Electrochemistry, 4, 342–347. DOI: 10.1007/s100080000126.

    Article  Google Scholar 

  • Navrátilová, Z., & Vaculíková, L. (2006). Electrodeposition of mercury film on electrodes modified with clay minerals. Chemical Papers, 60, 348–352. DOI: 10.2478/s11696-006-0063-3.

    Article  Google Scholar 

  • Navrátilová, Z., Wojtowicz, P., Vaculíková, L., & Šugárková, V. (2007). Sorption of alkylammonium cations on montmorillonite. Acta Geodynamica et Geomaterialia, 4(3), 59–65.

    Google Scholar 

  • Ngameni, E., Tonlé, I. K., Apohkeng, J. T., Bouwé, R. G. B., Jieumboué, A. T, & Walcarius, A. (2006). Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis, 18, 2243–2250. DOI: 10.1002/elan.200603654.

    Article  CAS  Google Scholar 

  • Praus, P., Turicova, M., Študentova, S., & Ritz, M. (2006). Study of cetyltrimethylammonium and cetylpyridinium adsorption on montinorillonite. Journal of Colloid and Interface Science, 304, 29–36. DOI: 10.1016/j.jcis.2006.08.038.

    Article  CAS  Google Scholar 

  • Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.

    Article  CAS  Google Scholar 

  • Rosen, M. J. (2004). Surfactants and interfacial phenomena (3rd ed.). Hoboken, NJ, USA: Wiley. DOI: 10.1002/0471670561.

    Book  Google Scholar 

  • Singh, B. P. (1999). The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78, 501–506. DOI: 10.1016/S0016-2361(98)00169-0.

    Article  CAS  Google Scholar 

  • Taraba, B., Kula, P., & Gucka, M. (2001). Calorimetric study of interaction between surfactants and coals. In Proceedings of the International Slovak and Czech Calorimetric Seminar, 28 May–1 June 2001 (pp 49–50). Račkova dolina, Slovakia.

    Google Scholar 

  • Vittal, R., Gomathi, H., & Kim, K.-J. (2006). Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in Colloid and Interface Science, 119, 55–68. DOI: 10.1016/j.cis.2005.09.004.

    Article  CAS  Google Scholar 

  • Wu, H. S., & Pendleton, P. (2001). Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity. Journal of Colloid and Interface Science, 243, 306–315. DOI: 10.1006/jcis.2001.7905.

    Article  CAS  Google Scholar 

  • Wu, S. F., Yanagisawa, K., & Nishizawa, T. (2001). ζ-potential on carbons and carbides. Carbon, 39, 1537–1541. DOI: 10.1016/S0008-6223(00)00275-X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Maršálek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maršálek, R., Navrátilová, Z. Comparative study of CTAB adsorption on bituminous coal and clay mineral. Chem. Pap. 65, 77–84 (2011). https://doi.org/10.2478/s11696-010-0076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0076-9

Keywords

Navigation