Skip to main content
Log in

Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Investigations were undertaken to study sorption of heavy metal ions from aqueous solution onto coal bottom ash. X-ray diffraction analysis of coal bottom ash indicated presence of feldspar (KAlSi3O8–NaAlSi3O8–CaAl2Si2O8), mullite (Al6Si2O13), and magnetite (Fe2+Fe3+ 2O4). Toxicity characteristics leaching procedure (TCLP) revealed that heavy metal ions such as Fe(II), Fe(III), Mn(II), Cu(II), Zn(II), As(III), As(V), Pb(II), and Cd(II) could be leached out from coal bottom ash. Continuous column test with the bottom ash showed negligible heavy metal ion leach-out at pH 6.0, although at pH 4.2 some heavy metal ion leaching, mainly of Mn(II), was observed. Batch sorption studies with individual heavy metal ions (Fe(II), Cu(II), Zn(II) and Mn(II)) revealed that the heavy metal ion sorption onto coal bottom ash could be described by pseudo-second-order kinetics. Sorption isotherm studies revealed that Langmuir isotherm could adequately describe the heavy metal ion sorption onto coal bottom ash with maximum adsorption capacity (q m) ranging from 1.00 to 25.00 mg/g for various heavy metal ions. Removal of heavy metal ions by coal bottom ash is attributed to both adsorption and hydroxide precipitation of heavy metals due to the presence of different oxides (i.e., SiO2, Al2O3, Fe2O3, CaO) in coal bottom ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ACAA (2010). Coal combustion product (CCP) production & use survey report.

  • Agarwal, A. K., Kadu, M. S., Pandhurnekar, C. P., & Muthreja, I. L. (2012). Kinetics and adsorption isotherm study of removal of Zn+2 ions from aqueous solution using thermal power plant fly ash. International Journal of Environmental Science and Development, 3(4), 376–381.

    Article  CAS  Google Scholar 

  • Ahmed, A. T., Khalid, H. A., Ahmed, A. A., & Chen, D. (2010). A lysimeter experimental study and numerical characterization of the leaching of incinerator bottom ash waste. Waste Management, 30, 1536–1543.

    Article  CAS  Google Scholar 

  • Amarasinghe, B. M. W. P. K., & Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal, 132, 299–309.

    Article  CAS  Google Scholar 

  • APHA, AWWA & WEF. (2005). Standard methods for the examination of water and wastewater. 21st edition. Washington, DC.

  • Asokan, P., Saxena, M., & Asolekar, S. R. (2005). Coal combustion residues-environmental implications and recycling potentials. Resources, Conservation and Recycling, 43, 239–262.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 41, 1–9.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology, 50, 388–397.

    Article  CAS  Google Scholar 

  • Bohli, T., Villaescusa, I., & Ouederni, A. (2013). Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon. Chemical Engineering & Process Technology, 4(4), 1–7.

    Article  Google Scholar 

  • Brigden, K., Santillo, D., & Stringer, R. (2002). Hazardous emissions from Thai coal-fired power plants: toxic and potentially toxic elements in fly ashes collected from Mae Moh and Thai Petrochemical Industry coal-fired power plants in Thailand, 2002. Exeter, UK: Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter.

    Google Scholar 

  • CEN. (2004). Characterization of waste—leaching behaviour tests—up-flow percolation test (under specified conditions), British Standards (in English). CEN TS, 14405.

  • Chaiyasith, S., Chaiyasith, P., & Septhum, C. (2006). Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand. Thammasat International Journal of Science and Technology, 11(2), 13–20.

    Google Scholar 

  • Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90–96.

    Article  CAS  Google Scholar 

  • Dan-Asabe, B., Yaro, S. A., Yawas, D. S., & Aku, S. Y. (2013). Water displacement and bulk density—relation methods of finding density of powered materials. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), 5561–5566.

    Google Scholar 

  • Dean, J. A. (1999). Lange’s handbook of chemistry (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314.

    Article  CAS  Google Scholar 

  • Gorme, J. B., Maniquiz, M. C., Kim, S. S., Son, Y. G., Kim, Y. T., & Kim, L. H. (2010). Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environmental Engineering Research, 15(4), 207–213.

    Article  Google Scholar 

  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technogies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388.

    Article  CAS  Google Scholar 

  • IEA. (2014). The impact of global coal supply on worldwide electricity prices. Paris: IEA/OECD.

    Google Scholar 

  • Jayaranjan, M.L.D., van Hullebusch, E.D., Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Review in Environmental Science and Bio/Technology, in press.

  • Jayaranjan, M. L. D., & Annachhatre, A. P. (2013). Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Water Science and Technology, 67(2), 311–318.

    Article  CAS  Google Scholar 

  • Johnson, C. A., Brandenberger, S., & Baccini, P. (1995). Acid neutralizing capacity of municipal waste incinerator bottom ash. Environmental Science and Technology, 29, 142–147.

    Article  CAS  Google Scholar 

  • Kim, B., & Prezzi, M. (2008). Compaction characteristics and corrosivity of Indiana class-F fly ash and bottom ash mixtures. Construction and Building Materials, 22, 694–702.

    Article  Google Scholar 

  • Komnitsas, K., Baztzas, G., & Paspaliaris, I. (2004). Clean up of acidic leachates using fly ash barriers: laboratory column studies. Global Nest: The International Journal, 6(1), 81–89.

    Google Scholar 

  • Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22, 1922–1928.

    Article  Google Scholar 

  • Lalhruaitluanga, H., Jayaram, K., Prasad, M. N. V., & Kumar, K. K. (2010). Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. Journal of Hazardous Materials, 175, 311–318.

    Article  CAS  Google Scholar 

  • Mason, P. M. (2013). Trace metals in aquatic systems. Wiley-Blackwell.

  • Mishra, P. C., & Patel, R. K. (2009). Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168, 319–325.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169, 351–359.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surface A: Physicochemical and Engineering Aspects, 177, 183–196.

    Article  CAS  Google Scholar 

  • Moreno, J. C., Gómez, R., & Giraldo, L. (2010). Removal of Mn, Fe, Ni and Cu Ions from wastewater using cow bone charcoal. Materials, 3, 452–466.

    Article  CAS  Google Scholar 

  • Mosti, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92, 42–48.

    Article  Google Scholar 

  • Neupane, G. and Donahoe, R. J. (2013). Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel, 1-13.

  • Pimraksa, K., Chindaprasirt, P., Huanjit, T., Tang, C., & Sato, T. (2013). Cement mortars hybridized with zeolite-like materials made of lignite bottom ash for heavy metal encapsulation. Journal of Cleaner Production, 41, 31–41.

    Article  CAS  Google Scholar 

  • Pipatmanomai, S., Fungtammasan, B., & Bhattacharya, S. (2009). Characteristics and composition of lignites and boiler ashes and their relation to slagging: the case of Mae Moh PCC boilers. Fuel, 88, 116–123.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., Macarty, P. L., & Parkin, G. F. (2007). Chemistry for environmental engineering and science (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Sharma, D. C., & Forster, C. F. (1993). Removal of hexavalent chromium using sphagnum moss peat. Water Resource, 27, 1201–1208.

    CAS  Google Scholar 

  • Sukpreabprom, H., Arquero, O. A., Naksata, W., Sooksamiti, P., & Janhom, S. (2014). Isotherm, kinetic and thermodynamic studies on the adsorption of Cd(II) and Zn(II) ions from aqueous solutions onto bottom ash. International Journal of Environmental Science and Development, 5(2), 165–170.

    Article  CAS  Google Scholar 

  • Üçer, A., Uyanik, A., & Aygün, Ş. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilized activated carbon. Separation and Purification Technology, 47(3), 113–118.

    Article  Google Scholar 

  • USEPA. (2013). International energy outlook 2013 with projections to 2040. DC: Washington.

    Google Scholar 

  • USEPA. (1996). Acid digestion of sediments, sludges, and soils. EPA SW 846-3050.

  • USEPA. (1992). Toxicity characteristic leaching procedure. EPA SW 846-1311.

  • Wang, J., Ban, H., Teng, X., Wang, H., & Ladwig, K. (2006). Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash. Chemosphere, 64, 1892–1898.

    Article  CAS  Google Scholar 

  • Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948–952.

    Article  CAS  Google Scholar 

  • Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was undertaken when Varinporn Asokbunyarat was a doctoral student at the Asian Institute of Technology, Bangkok, Thailand. Part of this work was undertaken at the University of Paris-Est, Paris, France. Valuable assistance by Dr. David Huguenot (Université Paris-Est) in ICP heavy metals analysis, Ir. Gilles Catillon in XRD analyses, and Prof. Yves Fuchs (Université Paris-Est) for SEM–EDS analysis of bottom ash is gratefully acknowledged. This research was conducted from funding of the French Government under the SDCC/France-AIT Network project and DUPC-funded EVOTEC project from the Netherlands. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Annachhatre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asokbunyarat, V., van Hullebusch, E.D., Lens, P.N.L. et al. Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions. Water Air Soil Pollut 226, 143 (2015). https://doi.org/10.1007/s11270-015-2415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2415-5

Keywords

Navigation