Skip to main content

Advertisement

Log in

Talaromyces flavus and its metabolites

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This manuscript presents an overview of the research performed on Talaromyces flavus, a microorganism remarkable for its secondary metabolites with unique biological activities, enzymes applicable in the synthesis of saccharides, preparation of chiral building blocks or biotransformations, and for its application in pest biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker, T. E., Brenneisen, P. E., & Tanenbaum, S. W. (1966). Isolation, structure, and radiochemical synthesis of 3,6-dimethyl-4-hydroxy-2-pyrone. Journal of the American Chemical Society, 88, 834–837. DOI: 10.1021/ja00956a041.

    Article  CAS  Google Scholar 

  • Adamcová, J., Proksa, B., & Fuska, J. (1992). Regulation of biosynthesis of vermiculin and vermistatin in Penicillium vermiculatum. Folia Microbiologica, 37, 50–52. DOI: 10.1007/BF02814580.

    Article  Google Scholar 

  • Arai, M., Tomoda, H., Okuda, T., Wang, H., Tabata, N., Masuma, R., Yamaguchi, Y., & Omura, S. (2002). Funiconerelated compounds, potentiators of antifungal miconazole activity, produced by Talaromyces flavus FKI-0076. Journal of Antibiotics, 55, 172–180.

    CAS  Google Scholar 

  • Augustín, J., Kuniak, L., Zemek, J., & Marvanová, L. (1983). Czechoslovak Patent No. 205,317. Prague: Industrial Property Office.

  • Ayer, W. A., & Racok, J. S. (1990a). The metabolites of Talaromyces flavus. Part 1. Metabolites of organic extract. Canadian Journal of Chemistry, 68, 2085–2094. DOI: 10.1139/v90-318.

    Article  CAS  Google Scholar 

  • Ayer, W. A., & Racok, J. S. (1990b). The metabolites of Talaromyces flavus. Part 2. Biological activity and biosynthetic studies. Canadian Journal of Chemistry, 68, 2095–2101. DOI: 10.1139/v90-319.

    Article  CAS  Google Scholar 

  • Barros Cota, B., Rosa, L. H., Basques Caligiorne, R., Teles Rabello, A. L., Almeida Alves, T. M., Rosa, C. A., Zani, C. L. (2008). Altenusin, a biphenyl isolated from the endophytic fungus Alternaria sp., inhibits trypanothione reductase from Trypanosoma cruzi. FEMS Microbiology Letters, 285, 177–182. DOI: 10.1111/j.1574-6968.2008.01221.x.

    Article  CAS  Google Scholar 

  • Benjamin, C. R. (1955). Ascocarps of Aspergillus and Penicillium. Mycologia, 47, 669–687. DOI: 10.2307/3755578.

    Article  Google Scholar 

  • Berbee, M. L., Yoshimura, A., Sugiyama, J., & Taylor, J. W. (1995). Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia, 87, 210–222. DOI: 10.2307/3760907.

    Article  CAS  Google Scholar 

  • Beuchat, L. R. (1988). Influence of organic acids on heat resistance characteristics of Talaromyces flavus ascospores. International Journal of Food Microbiology, 6, 97–105. DOI: 10.1016/0168-1605(88)90046-3.

    Article  CAS  Google Scholar 

  • Biffi Crotti, L., Polisel Jabor, V. A., Dos Santos Cunha Chellegatti, M. A., Vieira Fonseca, M. J., Said, S. (1999). Studies of pectic enzymes produced by Talaromyces flavus in submerged and solid substrate cultures. Journal of Basic Microbiology, 39, 227–235. DOI: 10.1002/(SICI)1521-4028(199909)39:4〈227::AId-JOBM227〉3.0.CO;2–8.

    Article  Google Scholar 

  • Birkinshaw, J. H., & Raistrick, H. (1933). LIII. Studies in the biochemistry of micro-organisms. XXVII. The production of luteic acid from various sources of carbon by Penicillium luteum Zukal. Biochemical Journal, 27, 370–375.

    CAS  Google Scholar 

  • Bojarová, P., Křenek, K., Kuzma, M., Petrásková, L., Bezouška, K., Namdjou, D.-J., Elling, L., & Křen, V. (2008). N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. Journal of Molecular Catalysis B: Enzymatic, 50, 69–73. DOI: 10.1016/j.molcatb.2007.09.002.

    Article  CAS  Google Scholar 

  • Boosalis, M. G. (1956). Effect of soil temperature and greenmanure amendment of unsterilized soil on parasitism of Rhizoctonia solani by Penicillium vermiculatum and Trichoderma sp. Phytopathology, 46, 473–478.

    Google Scholar 

  • Brauers, G. (2003). Isolation and structure elucidation of new natural products from sponge-associated fungi. Ph.D. thesis. Heinrich-Heine-University, Düsseldorf, Germany.

  • Brückner, D., Hafner, F.-T., Li, V., Schmeck, C., Telser, J., Vakalopoulos, A., & Wirtz, G. (2005). Dibenzodioxocinones — A new class of CETP inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 3611–3614 DOI: 10.1016/j.bmcl.2005.05.073.

    Article  CAS  Google Scholar 

  • Büchi, G., White, J. D., & Wogan, G. N. (1965). The structures of mitorubrin and mitorubrinol. Journal of the American Chemical Society, 87, 3484–3489. DOI: 10.1021/ja01093a036.

    Article  Google Scholar 

  • Chang, J.-M., Oyaizu, H., & Sugiyama, J. (1991). Phylogenetic relationship among eleven selected species of Aspergillus and associated teleomorphic genera estimated from 18S ribosomal RNA partial sequences. The Journal of General and Applied Microbiology, 37, 289–308. DOI: 10.2323/jgam.37.289.

    Article  CAS  Google Scholar 

  • Chattopadhyay, S. B., & Das Gupta, C. (1959). Arachniotus indicus sp.nov. Transactions of the British Mycological Society, 42, 72–74. DOI: 10.1016/S0007-1536(59)80070-X.

    Article  Google Scholar 

  • Chung, M.-C., Lee, H.-J., Chun, H.-K., & Kho, Y.-H. (1998). Penicillide, a nonpeptide calpain inhibitor, produced by Penicillium sp. F60760. Journal of Microbiology and Biotechnology, 8, 188–190.

    CAS  Google Scholar 

  • Dangeard, P. A. (1907). Recherches sur le développement du périthèce chez les Ascomycètes. Le Botaniste, 10, 176–217.

    Google Scholar 

  • De Stefano, S., Nicoletti, R., Milone, A., Zambardino, S. (1999). 3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry, 52, 1399–1401. DOI: 10.1016/S0031-9422(99)00320-9.

    Article  Google Scholar 

  • Demain, A. L., Chemerda, J. M., & White, R. F. (1972). U.S. Patent No. 3,635,795. Washington, D.C.: U.S. Patent and Trademark Office.

  • Dethoup, T., Manoch, L., Kijjoa, A., Pinto, M., Gales, L., Damas, A. M., Silva, A. M. S., Eaton, G., & Herz, W. (2007). Merodrimanes and other constituents from Talaromyces thailandiasis. Journal of Natural Products, 70, 1200–1202. DOI: 10.1021/np0680578.

    Article  CAS  Google Scholar 

  • Duo-Chuan, L. I., Chen, S., & Jing, L. U. (2005). Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia, 159, 223–229. DOI: 10.1007/s11046-004-9096-8.

    Article  CAS  Google Scholar 

  • Dutta, B. K. (1981). Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for control of Verticillium wilt. Plant and Soil, 63, 209–216. DOI: 10.1007/BF02374599.

    Article  Google Scholar 

  • Fahima, T., & Henis, Y. (1995). Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt pathogen Verticillium dahliae on eggplant roots. Plant and Soil, 176, 129–137. DOI: 10.1007/BF00017683.

    Article  CAS  Google Scholar 

  • Fahima, T., Madi, L., & Henis, Y. (1992). Ultrastructure and germinability of Verticillium dahliae microsclerotia parasitized by Talaromyces flavus on agar medium and in treated soil. Biocontrol Science and Technology, 2, 69–78. DOI: 10.1080/09583159209355220.

    Article  Google Scholar 

  • Fassatiová, O., & Hartmannová, V. (1971). A finding of the species Talaromyces vermiculatus (Dang.) Benj. in mines in Czechoslovakia. Czech Mycology, 26, 114–115.

    Google Scholar 

  • Fialová, P., Namdjou, D.-J., Ettrich, R., Přikrylová, J., Křenek, K., Kuzma, M., Elling, L., Bezouška, K., & Křen, V. (2005). Combined application of galactose oxidase and β-N-acetylhexosaminidase in the synthesis of complex immuno-active N-acetyl-d-galactosaminides. Advanced Synthesis and Catalysis, 347, 997–1006. DOI: 10.1002/adsc.200505041.

    Article  CAS  Google Scholar 

  • Fialová, P., Weignerová, L., Rauvolfová, J., Přikrylov Pišvejcov Křen, V. (2004). Hydrolytic and transglycosylation reactions of N-acyl modified substrates catalyzed by β-N-acetylhexosaminidases. Tetrahedron, 60, 693–701. DOI: 10.1016/j.tet.2003.10.111.

    Article  CAS  Google Scholar 

  • Findlay, J. A., Li, G., Miller, J. D., & Womiloju, T. O. (2003). Insect toxins from spruce endophytes. Canadian Journal of Chemistry, 81, 284–292. DOI: 10.1139/v03-044.

    Article  CAS  Google Scholar 

  • Fravel, D. R., Davis, J. R., & Sorensen, L. H. (1986). Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield 1984-1985. Biological and Cultural Tests for Control of Plant Diseases, 1, 17.

    Google Scholar 

  • Fravel, D. R., & Roberts, D. P. (1991). In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Science and Technology, 1, 91–99. DOI: 10.1080/09583159109355189.

    Article  Google Scholar 

  • Freitas, T. P. S., Furtado, N. A. J. C., Bastos, J. K., & Said, S. (2002). Active substances against trypomastigote forms of Trypanosoma cruzi and microorganisms are produced in sequence by Talaromyces flavus. Microbiological Research, 157, 201–206. DOI: 10.1078/0944-5013-00148.

    Article  Google Scholar 

  • Frisvad, J. C., Filtenborg, O., Samson, R. A., & Stolk, A. C. (1990). Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek, 57, 179–189. DOI: 10.1007/BF00403953.

    Article  CAS  Google Scholar 

  • Fuska, J., Fusková, A., & Nemec, P. (1979a). Vermistatin, an antibiotic with cytotoxic effects, produced from Penicillium vermiculatum. Biologia (Bratislava), 34, 735–739.

    CAS  Google Scholar 

  • Fuska J., Ivanitskaya, L. P., Makukho, L. V., Volkova, L. Ya. (1974a). Effect of the antibiotics vermiculin, PSX-1, bikaverin, and duclauxin isolated from fungi on synthesis of nucleic acids in cells of some tumors. Antibiotiki (Moscow), 19, 890–893.

    CAS  Google Scholar 

  • Fuska, J., Ivanitskaya, L., Horáková, K., & Kuhr, I. (1974b). The cytotoxic effects of a new antibiotic vermiculine. Journal of Antibiotics, 27, 141–142.

    CAS  Google Scholar 

  • Fuska, J., Jílek, R., & Fusková, A. (1982). Antibiotic and cytotoxic effects of microorganisms isolated from uranium mines in Jáchymov. Biologia (Bratislava), 37, 707–713.

    CAS  Google Scholar 

  • Fuska, J., Nemec, P., & Fusková, A. (1979b). Vermicillin, a new metabolite from Penicillium vermiculatum inhibiting tumor cells in vitro. Journal of Antibiotics, 32, 667–669.

    CAS  Google Scholar 

  • Fuska, J., Nemec, P., & Kuhr, I. (1972). Vermiculine, a new antiprotozoal antibiotic from Penicillium vermiculatum. Journal of Antibiotics, 25, 208–211.

    CAS  Google Scholar 

  • Fuska, J., Proksa, B., Khandlová, A., & Šturdíková, M. (1987). Microbial transformation of cardioglycosides. Applied Microbiology and Biotechnology, 26, 313–317. DOI: 10.1007/BF00256660.

    Article  CAS  Google Scholar 

  • Fuska, J., Proksa, B., Uhrín, D., Marvanová, L., & Šturdíková M. (1991). Biosynthesis of dehydrolatenusin by Talaromyces flavus. Acta Biotechnologica, 11, 73–76. DOI: 10.1002/abio.370110121.

    Article  CAS  Google Scholar 

  • Fuska, J., Uhrín, D., Proksa, B., Votický, Z., & Ruppeldt, J. (1986). The structure of vermistatin, a new metabolite from Penicillium vermiculatum. Journal of Antibiotics, 39, 1605–1608.

    CAS  Google Scholar 

  • Fusková, A., Fuska, J., & Kettner, M. (1978). Inhibtion of Tritrichomonas foetus by vermiculine in vitro. Folia Microbiologica, 23, 389–393. DOI: 10.1007/BF02876441.

    Article  Google Scholar 

  • Galvez-Mariscal, A., & Lopez-Munguia, A. (1991). Production and characterization of a dextranase from an isolated Paecilomyces lilacinus strain. Applied Microbiology and Biotechnology, 36, 327–331. DOI: 10.1007/BF00208151.

    Article  CAS  Google Scholar 

  • Ghosh, G. R., Orr, G. F., & Kuehn, H. H. (1961). A reevaluation of Arachniotus indicus. Mycologia, 53, 221–227. DOI: 10.2307/3756269.

    Article  Google Scholar 

  • Haggag, W. M., Kansoh, A. L., & Aly, A. M. (2006). Proteases from Talaromyces flavus and Trichoderma harzianum: Purification, characterization and antifungal activity against brown spot disease on faba bean. Plant Pathology Bulletin, 15, 231–239.

    CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1993). Thermophilic glucoamylase from Talaromyces flavus. Letters in Applied Microbiology, 17, 156–157. DOI: 10.1111/j.1472-765X.1993.tb00383.x.

    Article  CAS  Google Scholar 

  • Hayashi, K., Hatsutori, N., Donho, M., & Nakajima, H. (1996). Japan Patent No. 08,217,673. Tokyo: Japan Patent Office.

  • He, J., He, Y., Zhang, J.-Q., & Wei, Y.-H. (2007). Studies on the chemical constituents of Lycopus europaeus L. Jiefangjun Yaoxue Xuebao, 23, 432–433.

    CAS  Google Scholar 

  • Hendlin, D., Stapley, E. O., Jackson, M., Wallick, H., Miller, A. K., Wolf, F. J., Miller, T. W., Chaiet, L., Kahan, F. M., Foltz, E. L., Woodruff, H. B., Mata, J. M., Hernandez, S., & Mochales, S. (1969). Phosphomycin, new antibiotic produced by strain of Streptomyces. Science, 166, 122–123. DOI: 10.1126/science.166.3901.122.

    Article  CAS  Google Scholar 

  • Horáková, K., Kernáčová, B., Nemec, P., & Fuska, J. (1976). Characterization of the cytotoxic activity of vermiculine. Journal of Antibiotics, 29, 1109–1111.

    Google Scholar 

  • Horáková, L., Nouza, K., Pospíšil, K., Konopásková, E., Klapáčová, J., & Fuska, J. (1980). Immunosuppressive properties of the antibiotics cytostipin and vermiculine. Folia Biologica, 26, 312–326.

    Google Scholar 

  • Hušáková, L., Herkommerová-Rajnochová, E., Semeňuk, T., Kuzma, M., Rauvolfová, J., Přikrylov Plíhal, O., Bezouška, K., & Křen, V. (2003). Enzymatic discrimination of 2-acetamido-2-deoxy-d-mannopyranose-containing disaccharides using β-N-acetylhexosaminidases. Advanced Synthesis & Catalysis, 345, 735–742. DOI: 1002/adsc.200303002.

    Article  CAS  Google Scholar 

  • Inglis, G. D., & Kawchuk, L. M. (2002). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Canadian Journal of Microbiology, 48, 60–70. DOI: 10.1139/w01-130.

    Article  CAS  Google Scholar 

  • Ishibashi, K., Amao, S., Nii, M., & Kaburagi, H. (1974). German Patent No. 2,408,998. Munich: German Patent and Trade Mark Office.

  • Jabbar, A., Shresta, A. P., Hasan, C. M., & Rashid, M. A. (1999). Anti-HIV activity of dehydroaltenusin — a metabolite from a Streptomyces sp. Natural Product Sciences, 5, 162–164.

    CAS  Google Scholar 

  • Jiang, S., Li, L., Zhang, D., & Su, T. (2007). China Patent No. 10, 104,825. Beijing: China Intellectual Property Office.

  • Jones, D., Anderson, H. A., Russell, J. D., Fraser, A. R., & Onions, A. H. S. (1984). Vermiculine, a metabolic product from Talaromyces wortmannii. Transactions of British Mycological Society, 83, 718–721. DOI: 10.1016/S0007-1536(84)80196-5.

    Article  CAS  Google Scholar 

  • Kameda, K., & Namiki, M. (1974). An approach to biogenesis of dehydroaltenusin by enzymic oxidation. Chemistry Letters, 3, 265–266. DOI: 10.1246/cl.1974.265.

    Article  Google Scholar 

  • Kametani, S., Kojima-Yuasa, A., Kikuzaki, H., Kennedy, D. O., Honzawa, M., & Matsui-Yuasa, I. (2007). Chemical constituents of cape aloe and their synergistic growth-inhibiting effect on Ehrlich ascites tumor cells. Bioscience, Biotechnology, and Biochemistry, 71, 1220–1229. DOI: 10.1271/bbb.60659.

    Article  CAS  Google Scholar 

  • Kamisuki, S., Murakami, C., Ohta, K., Yoshida, H., Sugawara, F., Sakaguchi, K., & Mizushina, Y. (2002). Actions of derivatives of dehydroaltenusin, a new mammalian DNA polymerase α-specific inhibitor. Biochemical Pharmacology, 63, 421–427. DOI: 10.1016/S0006-2952(01)00912-1.

    Article  CAS  Google Scholar 

  • Kamisuki, S., Takahashi, S., Mizushina, Y., Sakaguchi, K., Nakata, T., & Sugawara, F. (2004). Precise structural elucidation of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α. Bioorganic & Medicinal Chemistry, 12, 5355–5359. DOI: 10.1016/j.bmc.2004.07.047.

    Article  CAS  Google Scholar 

  • Kamyschko, O. P. (1962). Penicillium liani. Notulae Systematicae e Sectione Cryptogamica Instituti Botanici Academiae Scientiarum URSS, 15, 86.

    Google Scholar 

  • Kawamura, H., Kaneko, T., Koshino, H., Esumi, Y., Uzawa, J., & Sugawara, F. (2000). Penicillides from Penicillium sp. isolated from Taxus cuspidata. Natural Products Research, 14, 477–484. DOI: 10.1080/10575630008043788.

    Article  CAS  Google Scholar 

  • Kim, K. K., Fravel, D. R., & Papavizas, G. C. (1990a). Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Canadian Journal of Microbiology, 36, 199–205. DOI: 10.1139/m90-034.

    Article  CAS  Google Scholar 

  • Kim, K. K.-A., Fravel, D. R., & Papavizas, G. (1990b). Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus. Canadian Journal of Microbiology, 36, 760–764. DOI: 10.1139/m90-131.

    Article  CAS  Google Scholar 

  • Kim, K. K., Fravel, D. R., & Papavizas, G. C. (1988). Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology, 78, 488–492. DOI: 10.1094/Phyto-78-488.

    Article  CAS  Google Scholar 

  • Kimura, Y., Yoshinari, T., Koshino, H., Fujioka, S., Okada, K., & Shimada, A. (2007). Rubralactone, rubralides A, B and C and rubramin produced by Penicillium rubrum. Bioscience, Biotechnology, and Biochemistry, 71, 1896–1901. DOI: 10.1271/bbb.70112.

    Article  CAS  Google Scholar 

  • Kimura, Y., Yoshinari, T., Shimada, A., & Hamasaki, T. (1995). Isofunicone, a pollen growth inhibitor produced by the fungus, Penicillium sp. Phytochemistry, 40, 629–631. DOI: 10.1016/0031-9422(95)00410-9.

    Article  CAS  Google Scholar 

  • King, A. D. (1997). Heat resistance of Talaromyces flavus ascospores as determined by a two phase slug flow heat exchanger. International Journal of Food Microbiology, 35, 147–51. DOI: 10.1016/S0168-1605(96)01213-5.

    Article  Google Scholar 

  • Klöcker, A. (1902). Gymnoascus flavus n.sp. Hedwigia, 41, 80–83.

    Google Scholar 

  • Kogan, G., Matulová, M., & Michalková, E. (2002). Extracellular polysaccharides of Penicillium vermiculatum. Zeitschrift für Naturforschung C, 57, 452–458.

    CAS  Google Scholar 

  • Komai, S., Hosoe, T., Itabashi, T., Nozawa, K., Yaguchi, T., Fukushima, K., & Kawai, K. (2006). New penicillide derivatives isolated from Penicillium simplicissimum. Journal of Natural Medicines, 60, 185–190. DOI: 10.1007/s11418-005-0028-9.

    Article  CAS  Google Scholar 

  • Komai, S., Hosoe, T., Itabashi, T., Nozawa, K., Yaguchi, T., Fukushima, K., & Kawai, K. (2005). New vermistatin derivatives isolated from Penicillium simplicissimum. Heterocycles, 65, 2771–2776. DOI: 10.3987/COM-05-10523.

    Article  CAS  Google Scholar 

  • Kováč, L., Böhmerová, E., & Fuska, J. (1978). Inhibition of mitochondrial functions by the antibiotics bikaverin and duclauxine. Journal of Antibiotics, 31, 616–620.

    Google Scholar 

  • Kuraishi, H., Aoki, M., Itoh, M., Katayama, Y., Sugiyama, J., & Pitt, J. I. (1991). Distribution of ubiquinones in Penicillium and related genera. Mycological Research, 95, 705–711. DOI: 10.1016/S0953-7562(09)80818-6.

    Article  CAS  Google Scholar 

  • Kuroda, K., Morishita, Y., Saito, Y., Ikuina, Y., Ando, K., Kawamoto, I., & Matsuda, Y. (1994). AS-186 compounds, new inhibitors of acyl-CoA: cholesterol acyltransferase from Penicillium asperosporum KY1635. Journal of Antibiotics, 47, 16–22.

    CAS  Google Scholar 

  • Leal, J. A., Gómez-Miranda, B., Prieto, A., Domenech, J., Ahrazem, O., & Bernabé, M. (1997). Possible chemotypes from cell wall polysaccharides, as an aid in the systematics of Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Mycological Research, 101, 1259–1264. DOI: 10.1017/S0953756297004012.

    Article  CAS  Google Scholar 

  • Lin, J., Zhang, P., Zheng, Z.-H., Dong, Y.-S., & Lu, X.-H. (2006). Study on acetylcholinesterase inhibitor F01-2076A produced from fermentation broth of fungus F01-2076. Hebei Daxue Xuebao, Ziran Kexueban, 26, 47–50.

    CAS  Google Scholar 

  • Madi, L., Katan, T., & Henis, Y. (1992). Inheritance of antagonistic properties and lytic enzyme activities in sexual crosses of Talaromyces flavus. Annals of Applied Biology, 121, 565–576. DOI: 10.1111/j.1744-7348.1992.tb03466.x.

    Article  Google Scholar 

  • Madi, L., Katan, T., Katan, J., & Henis, Y. (1997). Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology, 87, 1054–1060. DOI: 10.1094/PHYTO.1997.87.10.1054.

    Article  CAS  Google Scholar 

  • Maeda, N., Kamisuki, S., Takahashi, S., Yoshida, H., Sakaguchi, K., Sugawara, F., & Mizushina, Y. (2006). The in vitro and in vivo inhibitory effect of dehydroaltenusin: a specific inhibitor of mammalian DNA polymerase α. Current Bioactive Compounds, 2, 3–11.

    CAS  Google Scholar 

  • Maeda, N., Kokai, Y., Ohtani, S., Sahara, H., Kuriyama, I., Kamisuki, S., Takahashi, S., Sakaguchi, K., Sugawara, F., Yoshida, H., Sato, N., & Mizushina, Y. (2007). Antitumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α. Biochemical and Biophysical Research Communications, 352, 390–396. DOI: 10.1016/j.bbrc.2006.11.021.

    Article  CAS  Google Scholar 

  • Marois, J. J., Fravel, D. R., & Papavizas, G. C. (1984). Ability of Talaromyces flavus to occupy the rhizosphere and its interaction with Verticillium dahliae. Soil Biology and Biochemistry, 6, 387–390. DOI: 10.1016/0038-0717(84)90038-5.

    Article  Google Scholar 

  • Marois, J. J., Johnston, S. A., Dunn, M. T., & Papavizas, G. C. (1982). Biological control of Verticillium wilt of eggplant in the field. Plant Disease, 66, 1166–1168.

    Article  Google Scholar 

  • Martin, W. R., & Foster, J. W. (1955). Production of trans-l-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartaric acid. Journal of Bacteriology, 70, 405–414.

    CAS  Google Scholar 

  • Marx, G. S., & Tanenbaum, S. W. (1968). Biogenetic relationship between methyl triacetic lactone and stipitatic acid. Journal of the American Chemical Society, 90, 5302–5303. DOI: 10.1021/ja01021a061.

    Article  CAS  Google Scholar 

  • Massias, M., Molho, L., Rebuffat, S., Cesario, M., Guilhen, J., Pascard, C., & Bodo, B. (1989). Vermiculinol and vermiculidiol, macrodiolides from the Penicillium vermiculatum. Phytochemistry, 28, 1491–1494. DOI: 10.1016/S0031-9422(00)97771-9.

    Article  CAS  Google Scholar 

  • Matsumoto, K., & Takada, M. (1984). U.S. Patent No. 4,425,436. Washington, D.C.: U.S. Patent and Trademark Office.

  • Matsuyama, A., & Kobayashi, Y. (1996). U.S. Patent No. 5,512,465. Washington, D.C.: U.S. Patent and Trademark Office.

  • Matsuyama, A., Kobayashi, Y., & Ohnishi, H. (1993). Microbial production of optically active 1,3-butanediol from the racemate. Bioscience, Biotechnology, and Biochemistry, 57, 685–686. DOI: 10.1271/bbb.57.685.

    Article  CAS  Google Scholar 

  • Matsuyama, A., & Yamamoto, H. (2004). Practical applications of biocatalysis for the manufacture of chiral alcohols such as (R)-1,3-butanediol by stereospecific oxidoreduction. In H. U. Blaser & E. Schmidt (Eds.), Asymmetric catalysis on industrial scale (pp. 217–231). Weinheim, Germany: Willey-VCH.

    Google Scholar 

  • McLaren, D. L., Huang, H. C., & Rimmer, S. R. (1986). Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Canadian Journal of Plant Pathology, 8, 43–48. DOI: 10.1080/07060668609501840.

    Article  Google Scholar 

  • McLaren, D. L., Huang, H. C., Rimmer, S. R., & Kokko, E. G. (1989). Ultrastructural studies on infection of sclerotia of Sclerotinia sclerotiorum by Talaromyces flavus. Canadian Journal of Botany, 67, 2199–2205. DOI: 10.1139/b89-279.

    Article  Google Scholar 

  • Meelini, L., Nasini, G., & Selva, A. (1970). The structure of funicone: A new metabolite from Penicillium funiculosum Thom. Tetrahedron, 26, 2739–2749. DOI: 10.1016/S0040-4020(01)92849-2.

    Article  Google Scholar 

  • Mizuno, K., Yagi, A., Takada, M., Matsuura, K., Yamaguchi, K., & Asano, K. (1974). A new antibiotic, talaron. Journal of Antibiotics, 27, 560–563.

    CAS  Google Scholar 

  • Mizushina, Y., Kamisuki, S., Mizuno, T., Takemura, M., Asahara, H., Linn, S., Yamaguchi, T., Matsukage, A., Hanaoka, F., Yoshida, S., Saneyoshi, M., Sugawara, F., & Sakaguchi, K. (2000). Dehydroaltenusin, a mammalian DNA polymerase α inhibitor. The Journal of Biological Chemistry, 275, 33957–33961. DOI: 10.1074/jbc.M006096200.

    Article  CAS  Google Scholar 

  • Mohawed, S. M., & Badran, R. A. M. (1995). Proteinase K activities from Talaromyces flavus, with respect to its keratin hydrolyzing enzymes. Egyptian Journal of Microbiology, 30, 369–382.

    CAS  Google Scholar 

  • Monti, D., Pišvejcová, A., Křen, V., Lama, M., & Riva, S. (2004). Generation of an α-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnology and Bioengineering, 87, 763–771. DOI: 10.1002/bit.20187.

    Article  CAS  Google Scholar 

  • Murakami-Nakai, C., Maeda, N., Yonezawa, Y., Kuriyama, I., Kamisuki, S., Takahashi, S., Sugawara, F., Yoshida, H., Sakaguchi, K., & Mizushina, Y. (2004). The effects of dehydroaltenusin, a novel mammalian DNA polymerase α inhibitor, on cell proliferation and cell cycle progression. Biochimica et Biophysica Acta — General Subjects, 1674, 193–199. DOI: 10.1016/j.bbagen.2004.06.016.

    Article  CAS  Google Scholar 

  • Murray, F., Llewellyn, D., McFadden, H., Last, D., Dennis, E. S., & Peacock, W. J. (1999). Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Molecular Breeding, 5, 219–232. DOI: 10.1023/A:1009625801909.

    Article  CAS  Google Scholar 

  • Murray, F. R., Llewellyn, D. J., Peacock, W. J., & Dennis, E. S. (1997). Isolation of the glucose oxidase gene from Talaromyces flavus and characterization of its role in the biocontrol of Verticillium dahliae. Current Genetics, 32, 367–375. DOI: 10.1007/s002940050290.

    Article  CAS  Google Scholar 

  • Murtaza, N., Husain, S. A., Sarfaraz, T. B., Sultana, N., & Faizi, S. (1997). Isolation and identification of vermistatin, ergosterol, stearic acid and mannitol, metabolic products of Penicillium verruculosum. Planta Medica, 63, 191. DOI: 10.1055/s-2006-957645.

    Article  CAS  Google Scholar 

  • MycoBank (2010). Fungal Databases. Paris: International Mycological Association. Retrieved March 23, 2010, from http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=427208

    Google Scholar 

  • Naganuma, M., Nishida, M., Kuramochi, K., Sugawara, F., Yoshida, H., & Mizushina, Y. (2008). 1-Deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorganic & Medicinal Chemistry, 16, 2939–2944. DOI: 10.1016/j.bmc.2007.12.044.

    Article  CAS  Google Scholar 

  • Nakanishi, S., Toki, S., Saitoh, Y., Tsukuda, E., Kawahara, K., Ando, K., & Matsuda, Y. (1995). Isolation of myosin light chain kinase inhibitors from microorganisms: dehydroaltenusin, altenusin, atrovenetinone, and cyclooctasulfur. Bioscience, Biotechnology, and Biochemistry, 59, 1333–1335. DOI: 10.1271/bbb.59.1333.

    Article  CAS  Google Scholar 

  • Nakova, M. B. (2003). Verticillium wilt on cotton — ecological disease management possibilities. Journal of Environmental Protection and Ecology, 4, 70–77.

    CAS  Google Scholar 

  • National Center for Biotechnology Information (2010). Gen-Bank. Bethesda, MS, USA: U.S. National Library of Medicine. Retrieved March 23, 2010, from http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore&cmd=search&term=Talaromyces%20flavus

    Google Scholar 

  • Natsume, M., Takahashi, Y., & Marumo, S. (1988). Chlamydospore-like cell-inducing substances of fungi: close correlation between chemical reactivity with methylamine and biological activity. Agricultural and Biological Chemistry, 52, 307–312.

    CAS  Google Scholar 

  • Nishida, H., Tomoda, H., Cao, J., Araki, S., Okuda, S., & Omura, S. (1991). Purpactins, new inhibitors of acyl-CoA:cholesterol acyltransferase produced by Penicillium purpurogenum. III. Chemical modification of purpactin A. Journal of Antibiotics, 44, 152–159.

    CAS  Google Scholar 

  • Nozawa, K., Nakajima, S., Kawai, K., & Udagawa, S. I. (1992). A γ-pyrone derivative, rapicone, from Ramichloridium apiculatum. Phytochemistry, 31, 4177–4179. DOI: 10.1016/0031-9422(92)80438-K.

    Article  CAS  Google Scholar 

  • Orr, G. F., Kuehn, H. H., & Plunkett, O. A. (1963). The genus Gymnoascus Baranetzky. Mycopathologia, 21, 1–18. DOI: 10.1007/BF02053249.

    CAS  Google Scholar 

  • Parra, E., Jiménez-Barbero, J., Bernabé, M., Leal, J. A., Prieto, A., & Gómez-Miranda, B. (1994). Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus. Carbohydrate Research, 251, 315–325. DOI: 10.1016/0008-6215(94)84294-9.

    Article  CAS  Google Scholar 

  • Peterson, S. W. (2008). Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia, 100, 205–226. DOI: 10.3852/mycologia.100.2.205.

    Article  CAS  Google Scholar 

  • Pitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces (pp. 1–634). New York, NY, USA: Academic Press.

    Google Scholar 

  • Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (3rd ed., pp. 190). New York, NY, USA: Springer.

    Google Scholar 

  • Pohl, C. H., Botha, A., Kock, J. L. F., Coetzee, D. J., & Botes, P. J. (1997). The production of γ-linolenic acid by selected members of the Dikaryomycota grown on different carbon sources. Antonie van Leeuwenhoek, 72, 191–199. DOI: 10.1023/A:1000304809053.

    Article  CAS  Google Scholar 

  • Pornpakakul, S., Liangsakul, J., Ngamrojanavanich, N., Roengsumran, S., Sihanonth, P., Piapukiew, J., Sangvichien, E., Puthong, S., & Petsom, A. (2006). Cytotoxic activity of four xanthones from Emericella variecolor, an endophytic fungus isolated from Croton oblongifolius. Archives of Pharmacal Research, 29, 140–144. DOI: 10.1007/BF02974275.

    Article  CAS  Google Scholar 

  • Portais, J.-C., Tavernier, P., Besson, I., Courtois, J., Courtois, B., & Barbotin, J.-N. (1997). Mechanism of gluconate synthesis in Rhizobium meliloti by using in vivo NMR. FEBS Letters, 412, 485–489. DOI: 10.1016/S0014-5793(97)00832-6.

    Article  CAS  Google Scholar 

  • Prieto, A., Ahrazem, O., Gómez-Miranda, B., Bernabé, M., & Leal, J. A. (2002). Cell wall polysaccharides F1SS disclose the relatedness of the genus Geosmithia with Eupenicillium and Talaromyces. Canadian Journal of Botany, 80, 410–415. DOI: 10.1139/b02-037.

    Article  CAS  Google Scholar 

  • Proksa, B., Adamcová, J., & Fuska, J. (1994a). Identification and determination of secondary metabolites of Penicillium vermiculatum Dang. Journal of Chromatography A, 665, 185–190. DOI: 10.1016/0021-9673(94)87047-0.

    Article  CAS  Google Scholar 

  • Proksa, B., Adamcová, J., Liptaj, T., Prónayová, N., & Fuska, J. (1994b). Identification and determination of organic acids in cultivation medium of Penicillium vermiculatum Dang. Monatshefte für Chemie, 125, 707–711. DOI: 10.1007/BF01277630.

    Article  CAS  Google Scholar 

  • Proksa, B., Adamcová, J., & Fuska, J. (1992a). 2-Methylsorbic acid, an antifungal metabolite of Penicillium vermiculatum. Applied Microbiology and Biotechnology, 37, 443–445. DOI: 10.1007/BF00180965.

    Article  CAS  Google Scholar 

  • Proksa, B., & Fuska, J. (2000). Vermiculine: a diolide with immunoregulatory activity. Pharmazie, 55, 791–797.

    CAS  Google Scholar 

  • Proksa, B., & Fuska, J. (1995). Role of aliphatic acids in the biosynthesis of vermiculin in Penicillium vermiculatum. Pharmazie, 50, 215–216.

    CAS  Google Scholar 

  • Proksa, B., Liptaj, T., Prónayová, N., & Fuska, J. (1994c). (−)-Mitorubrinic acid, a new metabolite of Penicillium vermiculatum Dang. F-852. Chemical Papers, 48, 429–432.

    CAS  Google Scholar 

  • Proksa, B., Uhrín, D., Adamcová, J., & Fuska, J. (1992b). Vermilutin, a xanthone from Penicillium vermiculatum. Phytochemistry, 31, 1442–1444. DOI: 10.1016/0031-9422(92)80316-7.

    Article  CAS  Google Scholar 

  • Proksa, B., Uhrín, D., Adamcová, J., & Fuska, J. (1992c). Vermixocins A and B, two novel metabolites from Penicillium vermiculatum. Journal of Antibiotics, 45, 1268–1272.

    CAS  Google Scholar 

  • Proksa, B., Uhrín, D., Fuska, J., & Michálková, E. (1992d). (−)-Mitorubrinol and phthaldehydic acids, new metabolites of Penicillium vermiculatum Dang. Collection of Czechoslovak Chemical Communications, 57, 408–414. DOI: 10.1135/cccc19920408.

    Article  CAS  Google Scholar 

  • Proksa, B., Šturdíová, M., Mojumdar, S. C., & Fuska, J. (1997). Production of (−)-mitorubrinic acid by Penicillium vermiculatum. Folia Microbiologica, 42, 133–135. DOI: 10.1007/BF02898722.

    Article  CAS  Google Scholar 

  • Proksa, B., Šturdíová, M., Nahálková, M., & Fuska, J. (1996). Hydroxyfuniculosic and funiculosic acids, metabolites of Penicillium vermiculatum. Chemical Papers, 50, 21–24.

    CAS  Google Scholar 

  • Qureshi, I. H., Begum, T., & Murtaza, N. (1980). Microbial chemistry. III. Isolation and identification of the metabolic products of Penicillium funiculosum Thom. The chemistry of funiculosic acid. Pakistan Journal of Scientific and Industrial Research, 23, 16–20.

    CAS  Google Scholar 

  • Ram, C., & Ram, A. (1972). Timber-attacking fungi from the state of Maranhão, Brazil. IX. Some new or interesting wood staining fungi. Brotéria. Ciências Naturais, 41, 89–112.

    Google Scholar 

  • Rauvolfová, J., Kuzma, M., Weignerová, L., Fialová, P., Přikrylová, V., Pišvejcová, A., Macková, M., & Křen, V. (2004). β-N-Acetylhexosaminidase-catalysed synthesis of non-reducing oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 29, 233–239. DOI: 10.1016/j.molcatb.2003.10.008.

    Article  CAS  Google Scholar 

  • Reese, E. T., Maguire, A., & Parrish, F. W. (1972). 1,3-Glucanases of fungi and their relationship to mycodextranase. In G. Terui (Ed.), Proceedings of the 4th International Fermentation Symposium, 19–25 March 1972 (pp. 735–742). Osaka, Japan: Society of Fermentation Technology.

    Google Scholar 

  • Rosett, T., Sankhala, R. H., Stickings, C. E., Taylor, M. E. U., & Thomas, R. (1957). Biochemistry of micro-organisms. 103. Metabolites of Alternaria tenuis auct.: Culture filtrate products. Biochemical Journal, 67, 390–400.

    CAS  Google Scholar 

  • Rovensky, J., Buc, M., Blažíčková, S., Ferenčík, M., Rauová, Ľ., Fuska, J., & Stančíková, M. (1997a). Screening of immunological properties of vermiculine in selected model situations. Annals of the New York Academy of Sciences, 815, 369–371. DOI: 10.1111/j.1749-6632.1997.tb52087.x.

    Article  CAS  Google Scholar 

  • Rovensky, J., Grimová, J., Fuska, J., Laštovička, J., Pekárek, J., & Pokorná, D. (1990). Immunomodulatory effects of vermiculine in a model of adjuvant arthritis. International Journal of Immunopathology and Pharmacology, 3, 35–40.

    Google Scholar 

  • Rovensky, J., Lackovič, V., Veselková, Z., Košková, E., & Fuska, J. (1997b). Vermiculine-induced decrease in cytokine production by human leukocytes. International Journal of Immunotherapy, 18, 55–60.

    Google Scholar 

  • Rusman, Y. (2006). Isolation of new secondary metabolites from sponge-associated and plant-derived endophytic fungi. Ph.D. thesis. Heinrich-Heine-University, Düsseldorf, Germany.

    Google Scholar 

  • Sakaguchi, K., Inoue, T., & Tada, S. (1939). On the production of ethyleneoxide-α, β-dicarboxylic acid by moulds. Zentralblatt für Bakteriologie und Parasitenkunde, Abteilung 2, 100, 302–307

    Google Scholar 

  • Salituro, G. M., Pettibone, D. J., Clineschmidt, B. V., Williamson, J. M., & Zink, D. L. (1993). Potent, non-peptidic oxytocin receptor antagonists from a natural source. Bioorganic & Medicinal Chemistry Letters, 3, 337–340. DOI: 10.1016/S0960-894X(01)80905-7.

    Article  CAS  Google Scholar 

  • Sanz, L., Montero, M., Redondo, J., Llobell, A., & Monte, E. (2004). Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS Journal, 272, 493–499. DOI: 10.1111/j.1742-4658. 2004.04491.x.

    Article  CAS  Google Scholar 

  • Sassa, T., Niwa, G., Unno, H., Ikeda, M., & Miura, Y. (1974). Structure of penicillide, a new metabolite produced by a Penicillium sp. Tetrahedron Letters, 15, 3941–3942. DOI: 10.1016/S0040-4039(01)92051-9.

    Article  Google Scholar 

  • Sassa, T., Nukina, M., & Suzuki, Y. (1991). Deoxyfunicone, a new γ-pyrone metabolite from a resorcylide-producing fungus (Penicillium sp.). Agricultural and Biological Chemistry, 55, 2415–2416.

    CAS  Google Scholar 

  • Seifert, K. A., Samson, R. A., deWaard, J. R., Houbraken, J., Lévesque, C. A., Moncalvo, J.-M., Louis-Seize, G., & Hebert, P. D. N. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the U.S.A., 104, 3901–3906. DOI: 10.1073/pnas.0611691104.

    Article  CAS  Google Scholar 

  • Siessere, V., & Said, S. (1989). Pectic enzymes production in solid-state fermentation using citrus pulp pellets by Talaromyces flavus, Tubercularia vulgaris and Penicillium charlesii. Biotechnology Letters, 11, 343–344. DOI: 10.1007/BF01024515.

    Article  CAS  Google Scholar 

  • Silva, F. V. M., & Gibbs, P. (2004). Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Critical Reviews in Food Sciences and Nutrition, 44, 353–360. DOI: 10.1080/10408690490489251.

    Article  CAS  Google Scholar 

  • Simerská, P., Kuzma, M., Monti, D., Riva, S., Macková, M., & Křen, V. (2006). Unique transglycosylation potential of extracellular α-d-galactosidase from Talaromyces flavus. Journal of Molecular Catalysis B: Enzymatic, 39, 128–134. DOI: 10.1016/j.molcatb.2006.01.006.

    Article  CAS  Google Scholar 

  • Simerská, P., Kuzma, M., Pišvejcová, A., Weignerová, L., Macková, M., Riva, S., & Křen, V. (2003). Application of selectively acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides. Folia Microbiologica, 48, 329–337. DOI: 10.1007/BF02931362.

    Article  Google Scholar 

  • Simerská, P., Monti, D., Čechová, I., Pelantová, H., Macková, M., Bezouška, K., Riva, S., & Křen V. (2007). Induction and characterization of an unusual α-d-galactosidase from Talaromyces flavus. Journal of Biotechnology, 128, 61–71. DOI: 10.1016/j.jbiotec.2006.09.006.

    Article  CAS  Google Scholar 

  • Singh, S. B., Kelly, R., Guan, Z., Polishook, J. D., Dombrowski, A. W., Collado, J., González, A., Pelaez, F., Register, E., Kelly, T. M., Bonfiglio, C., & Williamson, J. M. (2005). New fungal metabolite geranylgeranyltransferase inhibitors with antifungal activity. Natural Products Research, 19, 739–747. DOI: 10.1080/1478641042000334715.

    Article  CAS  Google Scholar 

  • Spagna, G., Barbagallo, R. N., Martino, A., & Pifferi, P. G. (2000). A simple method for purifying glycosidases: α-Lrhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine. Enyzme and Microbial Technology, 27, 522–530. DOI: 10.1016/S0141-0229(00)00236-2.

    Article  CAS  Google Scholar 

  • Stolk, A. C., & Samson, R. A. (1972). The genus Talaromyces. Studies on Talaromyces and related genera II. Studies in Mycology, 2, 1–65.

    Google Scholar 

  • Stosz, S. K., Fravel, D. R., & Roberts, D. P. (1996). In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Applied and Environmental Microbiology, 62, 3183–3186.

    CAS  Google Scholar 

  • Stosz, S. K., Roy, S., Murphy, C., Wergin, W., & Fravel, D. R. (1998). Localization of glucose oxidase with immunocytochemistry in the biocontrol fungus Talaromyces flavus. Phytopathology, 88, 576–581. DOI: 10.1094/PHYTO.1998.88.6.576.

    Article  CAS  Google Scholar 

  • Šturdíková, M., Proksa, B., Fuska, J., & Stančíková, M. (1995). Vermilutin, an elastase inhibitor produced by Penicillium vermiculatum. Biologia (Bratislava), 50, 233–236.

    Google Scholar 

  • Sun, J. W., Cheng, X. L., Yan, Z. Z., Zhu, M. F., & Zhang, S. Z. (1988). Screening of dextranase-producing strains and comparison of their enzymic properties. Weishengwu Xuebao, 28, 45–55.

    CAS  Google Scholar 

  • Suzuki, K., Nozawa, K., Udagawa, S., Nakajima, S., & Kawai, K. (1991). Penicillide and dehydroisopenicillide from Talaromyces derxii. Phytochemistry, 30, 2096–2098. DOI: 10.1016/0031-9422(91)85080-J.

    Article  CAS  Google Scholar 

  • Suzuki, S., Hosoe, T., Nozawa, K., Yaguchi, T., Udagawa, S., & Kawai, K. (1999). Mitorubrin derivatives on ascomata of some Talaromyces species of ascomycetous fungi. Journal of Natural Products, 62, 1328–1329. DOI: 10.1021/np990146f.

    Article  CAS  Google Scholar 

  • Tabata, Y., Ikegami, S., Yaguchi, T., Sasaki, T., Hoshiko, S., Sakuma, S., Shin-Ya, K., & Seto, H. (1999). Diazaphilonic acid, a new azaphilone with telomerase inhibitory activity. Journal of Antibiotics, 52, 412–414.

    CAS  Google Scholar 

  • Takahashi, T., Yamashita, H., Kato, E., Mitsumoto, M., & Murakawa, S. (1976). Purification and some properties of Dglucono-γ-lactone dehydrogenase D-erythrobic acid producing enzyme of Penicillium cyaneo-fulvum. Agricultural & Biological Chemistry, 40, 121–129.

    CAS  Google Scholar 

  • Takeuchi, M., Nakajima, M., Ogita, T., Inukai, M., Kodama, K., Furuya, K., & Haneishi, T. (1989). Fosfonochlorin, a new antibiotic with spheroplast forming activity. Journal of Antibiotics, 42, 198–205.

    CAS  Google Scholar 

  • Tjamos, E. C., & Fravel, D. R. (1995). Detrimental effect of sublethal heating and Talaromyces flavus on microsclerotia of Verticillium dahliae. Phytopathology, 85, 388–392. DOI: 10.1094/Phyto-85-388.

    Article  Google Scholar 

  • Tomoda, H., Nishida, H., Masuma, R., Cao, J., Okuda, S., & Omura, S. (1991). Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium purpurogenum. I. Production, isolation and physico-chemical and biological properties. Journal of Antibiotics, 44, 136–143.

    CAS  Google Scholar 

  • Tournas, V. (1994). Heat-resistant fungi of importance to the food and beverage industry. Critical Reviews in Microbiology, 20, 243–263. DOI: 10.3109/10408419409113558.

    Article  CAS  Google Scholar 

  • Tozawa, R., Tsuboya, S., Shirosaki, M., & Sunahara, E. (1996). Japan patent No. 08, 245,691. Tokyo: Japan Patent Office.

  • Uchida, R., Tomoda, H., Dong, Y., & Omura, S. (1999). Alutenusin, a specific neutral sphingomyelinase inhibitor, produced by Penicillium sp. FO-7436. Journal of Antibiotics, 52, 572–574.

    CAS  Google Scholar 

  • Upadhyay, R. K., Strobel, G. A., Coval, S. J., & Clardy, J. (1990). Fijiensin, the first phytotoxin from Mycosphaerella fijiensis, the causative agent of Black Sigatoka disease. Cellular and Molecular Life Sciences, 46, 982–984. DOI: 10.1007/BF01939396.

    Article  CAS  Google Scholar 

  • Wang, L., & Zhuang, W.-Y. (2007). Phylogenetic analyses of penicillia based on partial calmodulin gene sequences. Biosystems, 88, 113–126. DOI: 10.1016/j.biosystems.2006.04.008.

    Article  CAS  Google Scholar 

  • Weignerová, L., Huňková, Z., Kuzma, M., & Křen, V. (2001). Enzymatic synthesis of three pNP-α-galacto-biopyranosides: application of the library of fungal α-galactosidases. Journal of Molecular Catalysis B: Enzymatic, 11, 219–224. DOI: 10.1016/S1381-1177(00)00076-X.

    Article  Google Scholar 

  • Weignerová, L., Sedmera, P., Huňková, Z., Halada, P., Křen, V., Casali, M., & Riva, S. (1999). Enzymatic synthesis of iso-globotriose from partially protected lactose. Tetrahedron Letters, 40, 9297–9299. DOI: 10.1016/S0040-4039(99)01950-4.

    Article  Google Scholar 

  • Wilkoff, L. J., & Martin, W. R. (1963). Studies on the biosynthesis of trans-l-epoxysuccinic acid by Aspergillus fumigatus. The Journal of Biological Chemistry, 238, 843–846.

    CAS  Google Scholar 

  • Xia, X.-K., Huang, H.-R., She, Z.-G., Cai, J.-W., Lan, L., Zhang, J.-Y., Fu, L.-W., Vrijmoed, L. L. P., & Lin, Y.-C. (2007). Structural and biological properties of vermistatin and two new vermistatin derivatives isolated from the marine-mangrove endophytic fungus Guignardia sp. No. 4382. Helvetica Chimica Acta, 90, 1925–1931. DOI: 10.1002/hlca.200790200.

    Article  CAS  Google Scholar 

  • Xu, J., Kjer, J., Sendker, J., Wray, V., Guan, H., Edrada, R., Mueller, W. E. G., Bayer, M., Lin, W., Wu, J. & Proksch, P. (2009). Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorganic & Medicinal Chemistry, 17, 7362–7367. DOI: 10.1016/j.bmc.2009.08.031.

    Article  CAS  Google Scholar 

  • Yadav, V., Yadav, P. K., Yadav, S., & Yadav, K. D. S. (2010). α-L-Rhamnosidase: A review. Process Biochemistry, 45, 1226–1235. DOI: 10.1016/j.procbio.2010.05.025.

    Article  CAS  Google Scholar 

  • Yaguchi, T., Someya, A., & Udagawa, S. (1996). A reappraisal of intrageneric classification of Talaromyces based on the ubiquinone systems. Mycoscience, 37, 55–60. DOI: 10.1007/BF02461457.

    Article  CAS  Google Scholar 

  • Zajícová, A., Mččková, M., Krulová, M., Rychnavská, Z., & Holáň, V. (2001). Immunosuppressive effects of vermiculine in vitro and in allotransplantation system in vivo. International Immunopharmacology, 1, 1939–1945. DOI: 10.1016/S1567-5769(01)00119-9.

    Article  Google Scholar 

  • Zarevucká, M., Wimmer, Z., Rejzek, M., Huňková, Z., & Křen, V. (2001). Enzymic synthesis and hydrolytic resolution of alkyl β-d-glucopyranosides. Biotechnology Letters, 23, 1505–1515. DOI: 10.1023/A:1011689423869.

    Article  Google Scholar 

  • Zhang, T.-T., Zhou, J.-S., Liu, Y., & Wang, Q. (2008). Chemical constituents of the aerial part of Bupleurum longicaule. Zhongguo Tianran Yaowu, 6, 430–434.

    CAS  Google Scholar 

  • Zhang, Y., Wang, T., Pei, Y., & Feng, B. (2002). Studies on the chemical constituents of Penicillium janthinellum Biourge. Zhongguo Yaowu Huaxue Zazhi, 12, 208–209.

    CAS  Google Scholar 

  • Zhu, J., & Porco, J. A., Jr. (2006). Asymmetric syntheses of (−)-mitorubrin and related azaphilone natural products. Organic Letters, 8, 5169–5171. DOI: 10.1021/ol062233m.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohumil Proksa.

Additional information

Dedicated to Professor Ján Fuska who devoted his attention to the fascinating world of microbial secondary metabolites

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proksa, B. Talaromyces flavus and its metabolites. Chem. Pap. 64, 696–714 (2010). https://doi.org/10.2478/s11696-010-0073-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0073-z

Keywords

Navigation