Skip to main content
Log in

Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In our experimental work on carbon nanotubes synthesis, the influence of pre-treatment and reaction temperature conditions over Fe catalyst loaded on low-cost activated carbon (AC) in the catalytic chemical vapor deposition of methane was studied. Catalyst with the metal concentration of 5 mass % calcined at 350°C and reduced at 450°C was effective in CH4 decomposition giving 98 % conversions. TEM images showed that thin multi-walled carbon nanotubes (MWNTs) with the average internal diameter of ∼ 8 nm and the wall thickness of ∼ 2.5 nm were obtained over unreduced Fe/AC catalyst at the reaction temperature of 850°C. On the other hand, broader filamentous nanostructures with the diameter of ∼ 22 nm and the wall thickness of ∼ 3.72 nm were observed over reduced catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baddour, C. E., & Briens, C. (2005). Carbon nanotube synthesis: A review. International Journal of Chemical Reactor Engineering, 3, R3.

    Article  Google Scholar 

  • Chai, S.-P., Zein, S. H. S., & Mohamed, A. R. (2007a). The effect of reduction temperature on Co-Mo/Al2O3 catalyst for carbon nanotubes formation. Applied Catalysis A: General, 326, 173–179. DOI: 10.1016/j.apcata.2007.04.020.

    Article  CAS  Google Scholar 

  • Chai, S.-P., Zein, S. H. S., & Mohamed, A. R. (2007b). The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane. Carbon, 45, 1535–1541. DOI: 10.1016/j.carbon.2007.03.020.

    Article  CAS  Google Scholar 

  • Chai, S.-P., Zein, S. H. S., & Mohamed, A. R. (2006). Formation of Y-junction carbon nanotubes by catalytic CVD of methane. Solid State Communications, 140, 248–250. DOI: 10.1016/j.ssc.2006.08.006.

    Article  CAS  Google Scholar 

  • Engel-Herbert, E., Pforte, H., & Hesjedal, T. (2007). CVD synthesis and purification of single-walled carbon nanotubes using silica-supported metal catalyst. Materials Letters, 61, 2589–2593. DOI: 10.1016/j.matlet.2006.10.004.

    Article  CAS  Google Scholar 

  • Fidalgo, B., Fernández, Y., Zubizarreta, L., Arenillas, A., Domínguez, A., Pis, J. J., & Menéndez, J. A. (2008). Growth of nanofilaments on carbon-based materials from microwaveassisted decomposition of CH4. Applied Surface Science, 254, 3553–3557. DOI: 10.1016/j.apsusc.2007.11.037.

    CAS  Google Scholar 

  • Gohier, A., Ewels, C. P., Minea, T.M., & Djouadi, M. A. (2008). Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 46, 1331–1338. DOI: 10.1016/j.carbon.2008.05.016.

    Article  CAS  Google Scholar 

  • Lee, E. K., Lee, S. Y., Han, G. Y., Lee, B. K., Lee, T.-J., Jun, J. H., & Yoon, K. J. (2004). Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production. Carbon, 42, 2641–2648. DOI: 10.1016/j.carbon.2004.06. 003.

    Article  CAS  Google Scholar 

  • Méhn, D., Fonseca, A., Bister, G., & Nagy, J. B. (2004). A comparison of different preparation methods of Fe/Mo/Al2O3 sol-gel catalyst for synthesis of single wall carbon nanotubes. Chemical Physics Letters, 393, 378–384. DOI: 10.1016/j.cplett.2004.06.071.

    Article  Google Scholar 

  • Messi, C., Carniti, P., & Gervasini, A. (2008). Kinetics of reduction of supported nanoparticles of iron oxide. Journal of Thermal Analysis and Calorimetry, 91, 93–100. DOI: 10.1007/s10973-007-8427-7.

    Article  CAS  Google Scholar 

  • Muradov, N. (2001). Catalysis of methane decomposition over elemental carbon. Catalysis Communications, 2, 89–94. DOI: 10.1016/S1566-7367(01)00013-9.

    Article  CAS  Google Scholar 

  • Ni, L., Kuroda, K., Zhou, L.-P., Kizuka, T., Ohta, K., Matsuishi, K., & Nakamura, J. (2006). Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 44, 2265–2272. DOI: 10.1016/j.carbon.2006.02.031.

    Article  CAS  Google Scholar 

  • Paradise, M., & Goswami, T. (2007). Carbon nanotubes — production and industrial applications. Materials & Design, 28, 1477–1489. DOI: 10.1016/j.matdes.2006.03.008.

    Article  CAS  Google Scholar 

  • Pérez-Mendoza, M., Vallés, C., Maser, W. K., Martínez, M. T., & Benito, A. M. (2005). Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 16, S224–S229. DOI: 10.1088/0957-4484/16/5/016.

    Article  Google Scholar 

  • Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science & Engineering: R: Reports, 43, 61–102. DOI: 10.1016/j.mser.2003.10.001.

    Article  Google Scholar 

  • Si, H., Zhou, C., Wang, H., Lou, S., Li, S., Du, Z., & Li, L. S. (2008). Controlled synthesis of different types iron oxides nanocrystals in paraffin oil. Journal of Colloid and Interface Science, 327, 466–471. DOI: 10.1016/j.jcis.2008.08.057.

    Article  CAS  Google Scholar 

  • Steplewska, A., Borowiak-Palen, E., & Kalenczuk, R. J. (2010). Effect of time on the metal-support (Fe-MgO) interaction in CVD synthesis of single-walled carbon nanotubes. Chemical Papers, 64, 255–260. DOI: 10.2478/s11696-009-0111-x.

    Article  CAS  Google Scholar 

  • Takenaka, S., Umebayashi, H., Tanabe, E., Matsune, H., & Kishida, M. (2007). Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas. Journal of Catalysis, 245, 392–400. DOI: 10.1016/j.jcat. 2006.11.005.

    Article  CAS  Google Scholar 

  • Yeoh, W.-M., Lee, K.-Y., Chai, S.-P., Lee, K.-T., & Mohamed, A. R. (2009). Synthesis of high purity multi-walled carbon nanotubes over Co-Mo/MgO catalyst by the catalytic chemical vapor deposition of methane. New Carbon Materials, 24, 119–123. DOI: 10.1016/S1872-5805(08)60041-4.

    Article  CAS  Google Scholar 

  • Yu, Z., Chen, D., T’tdal, B., & Holmen, A. (2005). Effect of catalyst preparation on the carbon nanotube growth rate. Catalysis Today, 100, 261–267. DOI: 10.1016/j.cattod.2004.09.060.

    Article  CAS  Google Scholar 

  • Yu, H., Zhang, Q., Zhang, Q., Wang, Q., Ning, G., Luo, G., & Wei, F. (2006). Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition. Carbon, 44, 1706–1712. DOI: 10.1016/j.carbon.2006.01.002.

    Article  CAS  Google Scholar 

  • Zeng, Q., Li, Z., & Zhou, Y. (2006). Synthesis and application of carbon nanotubes. Journal of Natural Gas Chemistry, 15, 235–246. DOI: 10.1016/S1003-9953(06)60032-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, V.M., Mohamed, A.R., Abdullah, A.Z. et al. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes. Chem. Pap. 64, 799–805 (2010). https://doi.org/10.2478/s11696-010-0066-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0066-y

Keywords

Navigation