Skip to main content
Log in

The role of acidity profile in the nanotubular growth of polyaniline

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Conditions of polyaniline (PANI) nanotubes preparation were analyzed. Aniline was oxidized with ammonium peroxydisulfate in 0.4 M acetic acid. There are two subsequent oxidation steps and the products were collected after each of them. At pH > 3, neutral aniline molecules are oxidized to non-conducting aniline oligomers. These produce templates for the subsequent growth of PANI nanotubes, which takes place preferably at pH 2–3. At pH < 2, granular morphology of the conducting PANI is obtained. High final acidity of the medium should be avoided in the preparation of nanotubes, e.g., by reducing the amount of sulfuric acid which is a by-product. Reduction of the peroxydisulfate-to-aniline mole ratio was tested for this purpose in the present study. Lowering of the reaction temperature from 20°C to −4°C had a positive effect on the formation of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayad, M. M., & Shenashin, M. A. (2004). Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7. European Polymer Journal, 40, 197–202. DOI: 10.1016/j.eurpolymj.2003.09.002.

    Article  CAS  Google Scholar 

  • Cai, Z., & Martin, C. R. (1989). Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. Journal of the American Chemical Society, 111, 4138–4139. DOI: 10.1021/ja00193a077.

    Article  CAS  Google Scholar 

  • Chattopadhyay, D., Banerjee, S., Chakravorty, D., & Mandal, B. M. (1998). Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom. Langmuir, 14, 1544–1547. DOI: 10.1021/la970936u.

    Article  CAS  Google Scholar 

  • Chiou, N.-R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000.

    Article  CAS  Google Scholar 

  • Chiou, N.-R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b.

    Article  Google Scholar 

  • Cruz-Silva, R., Ruiz-Flores, C., Arizmendi, L., Romero-García, J., Arias-Marin, E., Moggio, I., Castillon, F. F., & Farias, M. H. (2006). Enzymatic synthesis of colloidal polyaniline particles. Polymer, 47, 1563–1568. DOI: 10.1016/j.polymer.2005.12.082.

    Article  CAS  Google Scholar 

  • Dauginet-De Pra, L., & Demoustier-Champagne, S. (2005). A comparative study of the electronic structure and spectroelectrochemical properties of electrosynthesized polyaniline films and nanotubes. Thin Solid Films, 479, 321–328. DOI: 10.1016/j.tsf.2004.12.007.

    Article  CAS  Google Scholar 

  • Dispenza, C., Lo Presti, C., Belfiore, C., Spadaro, G., & Piazza, S. (2006). Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer, 47, 961–971. DOI: 10.1016/j.polymer.2005.12.071.

    Article  CAS  Google Scholar 

  • Frederikse, H. P. R., & Lide, D. R. (1995). (Eds.) CRC Handbook of chemistry and physics (76th ed., pp. 8–49). New York, NY, USA: CRC Press.

    Google Scholar 

  • Fu, Y., & Elsenbaumer, R. L. (1994). Thermochemistry and kinetics of chemical polymerization of aniline determined by solution calorimetry. Chemistry of Materials, 6, 671–677. DOI: 10.1021/cm00041a018.

    Article  CAS  Google Scholar 

  • Gospodinova, N., Mokreva, P., & Terlemezyan, L. (1993). Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer, 34, 2438–2439. DOI: 10.1016/0032-3861(93)90835-X.

    Article  CAS  Google Scholar 

  • Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282.

    Article  CAS  Google Scholar 

  • Huang, J. (2006). Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 78, 15–27. DOI: 10.1351/pac200678010015.

    Article  CAS  Google Scholar 

  • Huang, J., & Wan, M. X. (1999). In situ doping polymerization of polyaniline microtubules in the presence of β-naphthalenesulfonic acid. Journal of Polymer Science, Part A: Polymer Chemistry, 37, 151–157.

    Article  CAS  Google Scholar 

  • Huang, K., Meng, X.-H., & Wan, M. (2006). Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science, 100, 3050–3054. DOI: 10.1002/app.23704.

    Article  CAS  Google Scholar 

  • Huang, K., & Wan, M. (2002). Self-assembled polyaniline nanostructures with photoisomerization function. Chemistry of Materials, 14, 3486–3492. DOI: 10.1021/cm020206u.

    Article  CAS  Google Scholar 

  • Huang, K., Wan, M., Long, Y., Chen, Z., & Wei, Y. (2005). Multi-functional polypyrrole nanofibers via a functional dopant-introduced process. Synthetic Metals, 155, 495–500. DOI: 10.1016/j.synthmet.2005.06.013.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution throuhg a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016.

    Article  CAS  Google Scholar 

  • Jing, X., Wang, Y., Wu, D., She, L., & Guo, Y. (2006). Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science, Part A: Polymer Chemistry, 44, 1014–1019. DOI: 10.1002/pola.21217.

    Article  CAS  Google Scholar 

  • Kan, J., Zhang, S., & Jing, G. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Šeděnková, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009). Morphological evolution of selfassembled polyaniline nanostructures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a.

    Article  CAS  Google Scholar 

  • Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n.

    Article  CAS  Google Scholar 

  • Li, J. S., Shen, L. J., Gu, D. W., Yuan, P. F., Cui, X. B., & Yang, N. R. (2006). Optimum conditions for the preparation of polyaniline films under very high pressure. Reactive and Functional Polymers, 66, 1319–1326. DOI: 10.1016/j.reactfunctpolym.2006.03.014.

    Article  CAS  Google Scholar 

  • Long, Y., Zhang, L., Ma, Y., Chen, Z., Wang, N., Zhang, Z., & Wan, M. (2003). Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromolecular Rapid Communications, 24, 938–942. DOI: 10.1002/marc.200300039.

    Article  CAS  Google Scholar 

  • Lu, X., Mao, H., Chao, D., Zhang, W., & Wei, Y. (2006). Fabrication of polyaniline nanostructures under ultrasonic irradiation: From nanotubes to nanofibers. Macromolecular Chemistry and Physics, 207, 2142–2152. DOI: 10.1002/macp.200 600424.

    Article  CAS  Google Scholar 

  • Mazur, M., Tagowska, M., Pałys, B., & Jackowska, K. (2003). Template synthesis of polyaniline and poly(2-methoxyanil ine) nanotubes: comparison of the formation mechanisms. Electrochemistry Communications, 5, 403–407. DOI: 10.1016 /s1388-2481(03)00078-X.

    Article  CAS  Google Scholar 

  • McCarthy, P. A., Huang, J., Yang, S.-C., & Wang, H.-L. (2002). Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir, 18, 259–263. DOI: 10.1021/la0111093.

    Article  CAS  Google Scholar 

  • Park, M.-C., Sun, Q., & Deng, Y. (2007). Polyaniline microspheres consisting of highly crystallized nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI: 10.1002/marc.200700066.

    Article  CAS  Google Scholar 

  • Qiu, H., Wan, M., Matthews, B., & Dai, L. (2001). Conducting polyaniline nanotubes by template-free polymerization. Macromolecules, 34, 675–677. DOI: 10.1021/ma001525e.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI: 10.1016/j.tsf.2006.05.038.

    Article  Google Scholar 

  • Song, G., Han, J., & Guo, R. (2007). Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synthetic Metals, 157, 170–175. DOI: 10.1016/j.synthmet.2006.12.007.

    Article  CAS  Google Scholar 

  • Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258.

    CAS  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 0.1351/pac200274050857.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999a). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/S0379-6779(99)00105-8.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., Špírková, M., Riede, A., Helmstedt, M., Mokreva, P., & Prokeš, J. (1999b). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/S0032-3861(98)00478-9.

    Article  CAS  Google Scholar 

  • Sun, Q., & Deng, Y. (2008). The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization. Materials Letters, 62, 1831–1834. DOI: 10.1016/j.matlet.2007.10.038.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002.

    Article  CAS  Google Scholar 

  • Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g.

    Article  Google Scholar 

  • Venancio, E. C., Wang, P.-C., Toledo, O. Y., & MacDiarmid, A. G. (2007). First preparation of optical quality films of nano/micro hollow spheres of polymers of aniline. Synthetic Metals, 157, 758–763. DOI: 10.1016/j.synthmet.2007.08.006.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, N., Yan, X., Zhang, W., & Wei, Y. (2005). Alkaliguided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI: 10.1246/cl.2005.42.

    Article  Google Scholar 

  • Wang, Y., & Jing, X. (2008). Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v.

    Article  CAS  Google Scholar 

  • Wang, Y., Jing, X., & Kong, J. (2007). Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 157, 269–275. DOI: 10.1016/j.synthmet.2007.03.007.

    Article  CAS  Google Scholar 

  • Wei, Z., & Wan, M. (2002). Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 14, 1314–1317. DOI: 10.1002/1521-4095(20020916) 14:18〈1314::AID-ADMA1314〉3.0.CO;2-9.

    Article  CAS  Google Scholar 

  • Wu, J., Tang, Q., Li, Q., & Lin, J. (2008). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI: 10.1016/j.polymer.2008. 09.044.

    Article  CAS  Google Scholar 

  • Yang, Y., & Wan, M. (2001). Microtubules of polypyrrole synthesized by an electrochemical template-free method. Journal of Materials Chemistry, 11, 2022–2027. DOI: 10.1039/b102091i.

    Article  CAS  Google Scholar 

  • Zhang, L., Peng, H., Hsu, C. F., Kilmartin, P. A., & Travas-Sejdic, J. (2007a). Self-assembled polyaniline nanotubes grown from a polymeric acid solution. Nanotechnology, 18, 115607. DOI: 10.1088/0957-4484/18/11/115607.

    Article  Google Scholar 

  • Zhang, L., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007b). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI: 10.1002/elan.200603790.

    Article  CAS  Google Scholar 

  • Zhang, L., Peng, H., Zujovic, Z. D., Kilmartin, P. A., & Travas-Sejdic, J. (2007c). Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromolecular Chemistry and Physics, 208, 1210–1217. DOI: 10.1002/macp.200700013.

    Article  CAS  Google Scholar 

  • Zhang, L., Wan, M., & Wei, Y. (2006). Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant. Macromolecular Rapid Communications, 27, 366–371. DOI: 10.1002/marc.200500760.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wei, Z., Zhang, L., & Wan, M. (2005). Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 53, 1373–1379. DOI: 10.1016/j.actamat.2004.11.030.

    Article  CAS  Google Scholar 

  • Zhou, C., Han, J., Song, G., & Guo, R. (2008). Fabrication of polyaniline with hierarchical structures in alkaline solution. European Polymer Journal, 44, 2850–2858. DOI: 10.1016/j.eurpolymj.2008.01.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Konyushenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konyushenko, E.N., Trchová, M., Stejskal, J. et al. The role of acidity profile in the nanotubular growth of polyaniline. Chem. Pap. 64, 56–64 (2010). https://doi.org/10.2478/s11696-009-0101-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0101-z

Keywords

Navigation