Skip to main content
Log in

Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanotubes were prepared by oxidation of aniline in 0.4 M acetic acid. They were subsequently used as a reductant of silver nitrate in 1 M nitric acid, water or 1 M ammonium hydroxide at various molar ratios of silver nitrate to PANI. The resulting PANI-silver composites contained silver nanoparticles of 40–60 nm size along with macroscopic silver flakes. Under these experimental conditions, silver was always produced outside the PANI nanotubes. Changes in the molecular structure of PANI were analyzed by FTIR spectroscopy. Silver content in the composites was determined as a residue by thermogravimetric analysis, and confirmed by density measurements. The highest conductivity of a composite, 68.5 S cm−1, was obtained at the nitrate to PANI molar ratio of 0.67 in water. Also, the best reaction yield was obtained in water. Reductions performed in an acidic medium gave products with conductivity of 10−4–10−2 S cm−1, whereas the reaction in alkaline solution yielded non-conducting products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazito, F. F. C., Silveiro, L. T., Torresi, R. M., & Córdoba de Torresi, S. I. (2008). On the stabilization of conducting pernigraniline salt by the synthesis and oxidation of polyaniline in hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 10, 1457–1462. DOI: 10.1039/b714458.

    Article  CAS  Google Scholar 

  • Chen, Z., Xu, L., Li, W., Waje, M., & Yan, J. (2006). Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology, 17, 5254–5259. DOI: 10.1088/0957-4484/17/20/035.

    Article  CAS  Google Scholar 

  • Chiang, J. C., & MacDiarmid, A. G. (1986). Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205. DOI: 10.1016/0379-6779(86)90070-6.

    Article  CAS  Google Scholar 

  • Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z.

    Article  CAS  Google Scholar 

  • Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation and size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m.

    Article  CAS  Google Scholar 

  • Dedeouche, I., & Epron, F. (2007). Promoting effect of electroactive polymer supports on the catalytic performances on palladium-based catalysts for nitrite reduction in water. Applied Catalysis B: Environmental, 76, 291–299. DOI: 10.1016/j.apcatb.2007.06.002.

    Article  Google Scholar 

  • Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112.

    Article  CAS  Google Scholar 

  • Drelinkiewicz, A., Waksmundzka-Góra, A., Sobczak, J. W., & Stejskal, J. (2007). Hydrogenation of 2-ethyl-9,10-anthraquinone on Pd-polyaniline(SiO2) catalyst. The effect of humidity. Applied Catalysis A: General, 333, 219–228. DOI: 10.1016/j.apcata.2007.09.011.

    Article  CAS  Google Scholar 

  • Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R. W., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303–309. DOI: 10.1016/0379-6779(87)90896-4.

    Article  CAS  Google Scholar 

  • Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282.

    Article  CAS  Google Scholar 

  • Jin, E., Liu, N., Lu, X., & Zhang, W. (2007). Novel micro/nanostructures of polyaniline in the presence of different amino acids via self-assembly process. Chemistry Letters, 36, 1288–1289. DOI: 10.1246/cl.2007.1288.

    Article  CAS  Google Scholar 

  • Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 2007, 5571–5577. DOI: 10.1002/ejic.200700608.

    Article  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Šeděnkov’a, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899.

    Article  CAS  Google Scholar 

  • Li, W., Jia, Q. X., & Wang, H.-L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloid. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032.

    Article  CAS  Google Scholar 

  • Park, M.-C., Sun, Q., & Deng, Y. (2007). Polyaniline microspheres consisting of highly crystalline nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI: 10.1002/marc.200700066.

    Article  CAS  Google Scholar 

  • Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/FT9969203063.

    Article  CAS  Google Scholar 

  • Salavagione, H. J., Sanchis, C., & Morallón, E. (2007). Friendly conditions synthesis of platinum nanoparticles supported on a conducting polymer: Methanol electrooxidation. Journal of Physical Chemistry C, 111, 12454–12460. DOI: 10.1021/jp071037+.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, in press. DOI: 10.1002/pi.2476.

  • Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258.

    CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Jenkins A. D. (1996a). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-X.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., Armes, S. P., Lascelles, S. F., Riede, A., Helmstedt, M., Prokeš, J., & Křivka, I. (1996b). Polyaniline dispersions. 6. Stabilization by colloidal silica particles. Macromolecules, 29, 6814–6819. DOI: 10.1021/ma9603903.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006. 10.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Kovářová, J., Omastová, M. & Prokeš, J. (2008a). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g.

    Article  Google Scholar 

  • Wang, H.-L., Li, W., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Stejskal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stejskal, J., Trchová, M., Brožová, L. et al. Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem. Pap. 63, 77–83 (2009). https://doi.org/10.2478/s11696-008-0086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0086-z

Keywords

Navigation