Acta Parasitologica

, Volume 58, Issue 3, pp 317–323 | Cite as

The mutual influence of proteins from Varroa destructor extracts and from honeybee haemolymph on their proteolytic activity — in vitro study

  • Regina J. Frączek
  • Krystyna Żółtowska
  • Zbigniew Lipiński
  • Małgorzata Dmitryjuk
Original Paper

Abstract

The influence of extracts from Varroa destructor, a parasitic mite of the honeybee Apis mellifera, on the proteinase activity of worker bee haemolymph was analysed in vitro, along with the influence of bee haemolymph on the proteolytic activity of V. destructor extract. The study was conducted in three different environments: pH 7.5 (high activity of bee enzymes and very low activity of parasite enzymes), pH 5 (moderate activity of enzymes from both sources) and pH 3.5 (limited activity of bee proteinases and high activity of mite proteinases). Based on electrophoretic studies, the inhibition of the activity of bee haemolymph proteinases by V. destructor extracts was observed at each pH. The study at pH 7.5 with commercial inhibitors of the 4 main classes of proteinases (pepstatin A, ethylenediaminetetraacetic acid (EDTA), E-64 (trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane), soybean trypsin inhibitor and Kunitz inhibitor) suggested that parasite extracts mainly inhibited serine proteinases and, to a lower degree, cysteine and aspartyl proteinases. At pH 3.5 and pH 5, a decrease of approximately 40% in parasite proteinase activity was also observed in the presence of bee haemolymph. The result points to the presence of aspartyl proteinase inhibitors in bee haemolymph, which may be an important defence element for bees during food intake by a mite. It was demonstrated that trypsin and trypsin inhibitors are active in the excretion/secretion products of V. destructor, the proteinases of which may assist the parasite in food suckling by preventing haemolymph coagulation, among other things.

Keywords

Apis mellifera inhibitors honeybee proteinases Varroa destructor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alim M.A., Tsuji N., Miyoshi T., Islam M.K., Hugang X., Hatta T., Fujisaki K. 2008. H1Lgm2, a member of asparaginyl endopeptidases/legumains in the mitgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. Journal of Insect Physiology, 54, 573–585. DOI: 10.1016/j.jinsphys.2007.12.006.PubMedCrossRefGoogle Scholar
  2. Anderson D.L., Trueman J.W.H. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology, 24, 165–189. DOI: 10.1023/A:1006456720416.PubMedCrossRefGoogle Scholar
  3. Bania J., Polanowski A. 1999. Bioinsekticides and insect defense mechanisms. Postępy Biochemii, 45, 143–149 [in Polish].PubMedGoogle Scholar
  4. Bania J., Stachowik D., Polanowski A. 1999. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. European Journal of Biochemistry, 262, 680–687. DOI: 10.1046/j.1432-1327.1999.00406.x.PubMedCrossRefGoogle Scholar
  5. Cerenius L., Kawabata S., Lee B.L., Nonaka M., Söberhäll K. 2010. Proteolytic cascades and their involvement in invertebrate immunity. Trends in Biochemical Sciences, 35, 575–583.DOI: 10.1016/j.tibs.2010.04.006.PubMedCrossRefGoogle Scholar
  6. Chan Q.W.T., Howes CH.G., Foster L.J. 2006. Quantitative composition of caste differences in honeybee hemolymph. Molecular and Cellular Proteomics, 5, 2252–2262.DOI: 10.1074/mcp.M600197-MCP200.PubMedCrossRefGoogle Scholar
  7. Cicero J.M., Sammataro D. 2010. The salivary glands of adult female Varroa destructor (Acari, Varroidae), an ectoparasite of the honey bee, Apis mellifera (Hymenoptera, Apidae). International Journal of Acarology, 36, 377–386. DOI: 10.1080/0164795100475796.CrossRefGoogle Scholar
  8. Cierpicki T., Bania J., Otlewski J. 2000. NMR solution structure of Apis mellifera chymotrypsin/cathepsin G inhibitor-1 (AMCI-1), Structural similarity with Ascaris protease inhibitor. Protein Science, 9, 976–984. DOI: 10.1110/ps.9.5.976.PubMedCrossRefGoogle Scholar
  9. Felicioli A., Donadio E., Balestreri E., Montagnoli G., Felicioli R., Podesta A. 2004. Expression profile of water-soluble proteinases during ontogenesis of Megachile rotundata, an electrophoretic investigation. Apidologie, 35, 595–604. DOI: 10.1051/apido:2004064.CrossRefGoogle Scholar
  10. Frączek R., Żółtowska K., Lipiński Z. 2009. The activity of nineteen hydrolases in extracts from Varroa destructor and hemolymph of Apis mellifera carnica. Journal of Apicultural Science, 53, 42–51.Google Scholar
  11. Frączek R., Żółtowska K., Lipiński Z., Dmitryjuk M. 2012. Proteolytic activity In the extracts and In the excretory/secretory products from Varroa destructor parasitic mite of honeybee. International Journal of Acarology, 38, 101–109. DOI: 10.1080/01647954.2011.610357.CrossRefGoogle Scholar
  12. Genersch E. 2010. Honey bee pathology, current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 87, 87–97. DOI: 10.1007/s00253-010-2573-8.PubMedCrossRefGoogle Scholar
  13. Grzywnowicz K., Ciołek A., Tabor A., Jaszek M. 2009. Profiles of the body-surface proteolytic system of honey bee queens, workers and drones. Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidologie, 40, 4–19. DOI: 10.1051/apido:2008057.Google Scholar
  14. Küster F.W., Thiel A. 1993. Rechentafeln für die chemische Analytik. Walter de Gruyter, Berlin — NY. ISBN — 311012131X.Google Scholar
  15. Liao M., Zhou J., Gong H., Boldbaatar D., Shirafuji R., Battur B., Nishikawa Y., Fujisaki K. 2009. Hemlin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphsalis longicormis. Journal of Insect Physiology, 55, 165–174. DOI: 10.1016/j.jinsphys.2008.11.004.CrossRefGoogle Scholar
  16. Lowry O.H., Rosenbrough N.J., Farr A.R., Randall K.J. 1951. Protein measurement with the Folin phenol-reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  17. Maritz-Olivier C., Stutzer C., Jongejan F., Neitz A.W.H., Gaspar A.R.D. 2007. Tick anti-haemostatic’s, targets for future vaccines and therapeutics. Trends Parasitology, 23, 397–407.CrossRefGoogle Scholar
  18. Mendiola J., Alonso M., Marquetti M.C., Finlay C. 1996. Boophilus microplus, multiple proteolytic activities in the midgut. Experimental Parasitology, 82, 27–33.PubMedCrossRefGoogle Scholar
  19. Muta T., Iwanaga S. 1998. The role of hemolymph coagulation in innate immunity. Current Opinion in Immunology, 8, 41–47.CrossRefGoogle Scholar
  20. Richards E.H., Jones B., Bowman A. 2011. Salivary secretions from the honeybee mite Varroa destructor, effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138, 602–608. DOI: 10.107/S0031182011000072.PubMedCrossRefGoogle Scholar
  21. Rosenkranz P., Aumeier P., Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. DOI: 10.1016/j.jip.2009.07.016.PubMedCrossRefGoogle Scholar
  22. Strachecka A., Grzywnowicz K. 2008. Activity of protease inhibitors on the body surface of the honeybee. Medycyna Weterynaryjna, 64, 1256–1259 [in Polish].Google Scholar
  23. Tewarson N.C., Jany K.D. 1982. Determination of proteolysis activity in Varroa jacobsoni an ectoparasitic hemophagous mite of honey bees (Apis sp.). Apidologie, 13, 383–389.CrossRefGoogle Scholar
  24. Uriel J., Berges J. 1968. Characterization of natural inhibitors of trypsin and chymotrypsin by electrophoresis In acrylamideagarose gels. Nature, 218, 578–580. DOI: 10.1038/218578b0.PubMedCrossRefGoogle Scholar
  25. Vilcinskas A. 2010. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence, 1, 206–214. DOI: 10.4161/viru.1.3.12072.PubMedCrossRefGoogle Scholar
  26. Willadsen P., Riding G.A. 1980. On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochemical Journal, 189, 295–303.PubMedGoogle Scholar
  27. Zou Z., Lopez D.L., Kanost M.R., Evans J.D., Jiang H. 2006. Comparative analysis of serine protease-related genes in the honey bee genome, possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 15, 603–614. DOI: 10.1111/j.1365-2583.2006.00684.x.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Regina J. Frączek
    • 1
  • Krystyna Żółtowska
    • 1
  • Zbigniew Lipiński
    • 2
  • Małgorzata Dmitryjuk
    • 1
  1. 1.Biochemistry Department, Faculty of BiologyUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Institute of Animal Reproduction and Food Research of Polish Academy of SciencesDivision of Reproductive BiologyOlsztynPoland

Personalised recommendations