Skip to main content
Log in

Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In this study we compared contributions to polar motion excitation determined separately from each of three kinds of geophysical data: atmospheric pressure, equivalent water height estimated from hydrological models, and harmonic coefficients of the Earth gravity field obtained from Gravity Recovery and Climate Experiment (GRACE). Hydrological excitation function (Hydrological Angular Momentum — HAM) has been estimated from models of global hydrology, based on the observed distribution of surfacewater, snow, ice, and soil moisture. In our considerationwe used several global models of land hydrosphere and models ofAtmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM). All of themwere compared with observed Geodetic Angular Momentum (GAM). The spectra of the following excitation functions of polar motion: GAM, AAM+OAM, AAM+OAM+HAM, GAM-AAM-OAM residual geodetic excitation function, and HAM were computed too. The time variable spectra of geodetic, gravimetric, and the sum of atmospheric, oceanic, and hydrological excitation functions are also presented. Phasor diagrams of the seasonal components of polar motion excitation functions of all HAM excitation functions as well as of two GRACE solutions: Center for Space Research (CSR), Centre National d’Etudes Spatiales/Groupe de Recherche en Geodesie Spatiale (CNES/GRGS) were determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, R.T., R. Hide, A.A. White, and C.A. Wilson (1983), Atmospheric angular momentum, fluctuation length of day changes and polar motion, Proc. R. Soc. Lond. A 387, 31–73.

    Article  Google Scholar 

  • Bizouard, C., and D. Gambis (2009), The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: H. Drewes (ed.), Geodetic Reference Frames, IAG Symposium, Munich, Germany, October 9–14, 2006, Springer, Berlin, 265–270.

    Google Scholar 

  • Bruinsma, S., J-M. Lemoine, R. Biancale, N. Valés (2010), CNES/GRGS 10-day gravity field models (release 2) and their evaluation, Adv. Space. Res. 45,4, 587–601, DOI: 10.1016/j.asr.2009.10.012.

    Article  Google Scholar 

  • Brzeziński, A. (1992), Polar motion excitation by variations of the effective angular momentum functions: considerations concerning deconvolution problem, Manuscr. Geodaet. 17,1, 3–20.

    Google Scholar 

  • Brzeziński, A., J. Nastula, and B. Kołaczek (2009), Seasonal excitation of polar motion estimated from recent geophysical models and observations, J. Geodyn. 48, 235–240, DOI: 10.1016/j.jog.2009.09.021.

    Article  Google Scholar 

  • Chao, B.F. (1988), Excitation of the Earth’s polar motion due to mass variations in major hydrological reservoirs, J. Geophys. Res. 93,B11, 13811–13819, DOI: 10.1029/JB093iB11p13811.

    Article  Google Scholar 

  • Chen, J.L., and C.R. Wilson (2005), Hydrological excitation of polar motion (1993–2002), Geophys. J. Int. 160,3, 833–839, DOI: 10.1111/j.1365- 246X.2005.02522.x.

    Article  Google Scholar 

  • Döll, P., F. Kaspar, and B. Lehner (2003), A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol. 270, 105–134, DOI: 10.1016/S0022-1694(02)00283-4.

    Article  Google Scholar 

  • Eubanks, T.M. (1993), Variations in the orientation of the Earth. In: D.E. Smith and D.L. Turcotte (eds.), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, AGU, Washington D.C., 1–54.

    Google Scholar 

  • Gross, R.S., I. Fukumori, and D. Menemenlis (2003), Atmospheric and oceanic excitation of the Earth’s wobble during 1980–2000, J. Geophys. Res. 108,B8, 2370, DOI: 10.1029/2002JB002143

    Article  Google Scholar 

  • Gross, R.S., I. Fukumori, and D. Menemenlis (2005), Atmospheric and oceanic excitation of decadal-scale Earth orientation variation, J. Geophys. Res. 110, B09405, DOI: 10.1029/2004JB003565.

    Article  Google Scholar 

  • Jin, S., D.P. Chambers, and B.D. Tapley (2010), Hydrological and oceanic effects on polar motion from GRACE and models, J. Geophys. Res. 115, B02403, DOI: 10.1029/2009JB006635.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph (1996), The NCEP/NCAR 40-year Reanalysis Project, Bull. Am. Meteor. Soc. 77, 437–471, DOI: 10.1175/1520-0477(1996)077〈0437:TNYRP〉2.0.CO;2.

    Article  Google Scholar 

  • Kosek, W. (1995), Time variable band pass filter spectra of real and complex-valued polar motion series, Artif. Satell., Planet. Geod. 30,1, 283–299.

    Google Scholar 

  • Lambeck, K. (1980), The Earth’s Variable Rotation: Geophysical Causes and Consequences, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Munk, W.H., and G.J.F. McDonald (1960), The Rotation of the Earth, a Geological Discussion, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nastula, J., and B. Kołaczek (2005), Analysis of hydrological excitation of polar motion. In: Proc. of the Workshop “Forcing of polar motion in the Chandler frequency band: a contribution to understanding interannual climate variations”, Centre European de Geodynamique et de Seismologie, Luxembourg, 149–154.

    Google Scholar 

  • Nastula, J., and R.M. Ponte (1999), Further evidence of oceanic excitation of polar motion, Geophys. J. Int. 139,1, 123–130, DOI: 10.1046/j.1365-246X.1999.00930.x.

    Article  Google Scholar 

  • Nastula, J., R.M. Ponte, and D.A. Salstein (2007), Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids, Geophys. Res. Lett. 34, L11306, DOI: 10.1029/2006GL028983.

    Article  Google Scholar 

  • Ponte, R.M., D. Stammer, and J. Marshall (1998), Oceanic signals in observed motions of Earth’s pole of rotation, Nature 391, 476–479, DOI: 10.1038/35126.

    Article  Google Scholar 

  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The global land data assimilation system, Bull. Am. Meteor. Soc. 85,3, 381–394, DOI: 10.1175/BAMS-85-3-381.

    Article  Google Scholar 

  • Salstein, D.A., D.M. Kann, A.J. Miller, and R.D. Rosen (1993), The subbureau for atmospheric angular momentum of the international Earth rotation service: A meteorological data center with geodetic applications, Bull. Am. Meteor. Soc. 74, 67–80, DOI: 10.1175/1520-0477(1993)074〈0067:TSBFAA〉2.0.CO;2.

    Article  Google Scholar 

  • Seoane, L., J. Nastula, C. Bizouard, and D. Gambis (2009), The use of gravimetric data from GRACE mission in the understanding of polar motion variations, Geophys. J. Int. 178,2, 614–622, DOI: 10.1111/j.1365-246X.2009.04181.x.

    Article  Google Scholar 

  • Werth, S., and A. Güntner (2010), Calibration analysis for water storage variability of the global hydrological model WGHM, Hydrol. Earth Syst. Sc. 14, 59–78, DOI: 10.5194/hess-14-59-2010.

    Article  Google Scholar 

  • Wilson, C.R. (1985), Discrete polar motion equations, Geophys. J. Roy. Astron. Soc. 80,2, 551–554, DOI: 10.1111/j.1365-246X.1985.tb05109.x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Nastula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nastula, J., Paśnicka, M. & Kołaczek, B. Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0. Acta Geophys. 59, 561–577 (2011). https://doi.org/10.2478/s11600-011-0008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0008-2

Key words

Navigation