Skip to main content

Advertisement

Log in

Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The effects of the slope angle, surface buoyancy flux, and background stratification on steady-state katabatic winds are studied using large-eddy simulation (LES). The numerical code was described and validated in a companion paper (Part 1). Our numerical results are interpreted in the light of analytical Prandtl model, and we find that our vertical profiles of the downslope velocity, buoyancy, and the momentum and buoyancy fluxes exhibit many of the features from the analytical solution. On the other hand, there are also differences between the analytical and numerical results due to the assumptions in the analytical model. One of the assumptions is that the Prandtl number is constant throughout the boundary layer. However, the simulations show that this number varies with height, and also that the Prandtl number increases with increasing gradient Richardson number. The immediate benefit of LES over analytical models is its capability of resolving turbulent motions. In our study of the turbulence kinetic energy budgets, we find that the wind shear is the largest production term, and that it is mainly balanced by turbulence dissipation. Near the wind maximum, where the shear vanishes, the turbulence transport is the only production term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelsen, S.L., and H. van Dop (2009), Large-eddy simulation of katabatic winds. Part 1: Comparison with observations, Acta Geophys. 57, 4, 803–836, DOI: 10.2478/s11600-009-0042-5 (this issue).

    Google Scholar 

  • Bange, J., and R. Roth (1999), Helicopter-borne flux measurements in the nocturnal boundary layer over land - a case study, Bound.-Layer Meteor. 92, 2, 295–325, DOI: 10.1023/A:1002078712313.

    Article  Google Scholar 

  • Basu, S., and F. Porté-Agel (2006), Large-eddy simulation of stably stratified atomspheric boundary layer turbulence: A scale-dependent dynamic modeling approach, J. Atmos. Sci. 63, 8, 2074–2091, DOI: 10.1175/JAS3734.1.

    Article  Google Scholar 

  • Beare, R.J., M.K. Macvean, A.A.M. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M.A. Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T.S. Lund, J.K. Lundquist, A. Mccabe, A.F. Moene, Y. Noh, S. Raasch, and P. Sullivan (2006), An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Layer Meteor. 118, 2, 247–272, DOI: 10.1007/s10546-004-2820-6.

    Article  Google Scholar 

  • Cuxart, J., and M.A. Jiménez (2007), Mixing processes in a nocturnal low-level jet: an LES study, J. Atmos. Sci. 64, 5, 1666–1679, DOI: 10.1175/JAS3903.1.

    Article  Google Scholar 

  • Denby, B. (1999), Second-order modelling of turbulence in katabatic flows, Bound.-Layer Meteor. 92, 1, 65–98, DOI: 10.1023/A:1001796906927.

    Article  Google Scholar 

  • Fedorovich, E., and A. Shapiro (2009), Structure of numerically simulated katabatic and anabatic flows along steep slopes, Acta Geophys. 57, 4, 981–1010, DOI: 10.2478/s11600-009-0027-4 (this issue).

    Article  Google Scholar 

  • Grisogono, B. (2003), Post-onset behaviour of the pure katabatic flow, Bound.-Layer Meteor. 107, 1, 157–175, DOI: 10.1023/A:1021511105871.

    Article  Google Scholar 

  • Grisogono, B., and J. Oerlemans (2001a), Katabatic flow: Analytic solution for gradually varying eddy diffusivities, J. Atmos. Sci. 58, 21, 3349–3354, DOI: 10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.

    Article  Google Scholar 

  • Grisogono, B., and J. Oerlemans (2001b), A theory for the estimation of surface fluxes in simple katabatic flows, Quart. J. Roy. Met. Soc. 127, 578, 2725–2739, DOI: 10.1002/qj.49712757811.

    Article  Google Scholar 

  • Gutman, L.N., and V.M. Malbakhov (1964), On the theory of katabatic winds of Antarctica, Met. Issled. 9, 150–155 (in Russian).

    Google Scholar 

  • Haiden, T., and C.D. Whiteman, (2005), Katabatic flow mechanisms on a low-angle slope, J. Appl. Meteorol. 44, 1, 113–126, DOI: 10.1175/JAM-2182.1.

    Article  Google Scholar 

  • Kavčič, I., and B. Grisogono (2007), Katabatic flow with Coriolis effect and gradually varying eddy diffusivity, Bound.-Layer Meteor. 125, 2, 377–387, DOI: 10.1007/s10546-007-9167-8.

    Google Scholar 

  • Klein, T., G. Heinemann, D.H. Bromwich, J.J. Cassano, and K.M. Hines (2001), Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data, Meteorol. Atmos. Phys. 78, 1–2, 115–132, DOI: 10.1007/s007030170010.

    Article  Google Scholar 

  • Mahrt, L., and S. Larsen (1990), Relation of slope winds to the ambient flow over gentle terrain, Bound.-Layer Meteor. 53, 1–2, 93–102, DOI: 10.1007/BF00122465.

    Article  Google Scholar 

  • Monti, P., H.J.S. Fernando, M. Princevac, W.C. Chan, T.A. Kowalewski, and E.R. Pardyjak (2002), Observations of flow and turbulence in the nocturnal boundary layer over a slope, J. Atmos. Sci. 59, 17, 2513–2534, DOI: 10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.

    Article  Google Scholar 

  • Nappo, C.J., and K. Rao (1987), A model study of pure katabatic flows, Tellus 39A, 61–71.

    Google Scholar 

  • Oerlemans, J. (1994), Quantifying global warming from the retreat of glaciers, Science 264, 5156, 243–245, DOI: 10.1126/science.264.5156.243.

    Article  Google Scholar 

  • Oerlemans, J. (1998), The atmospheric boundary layer over melting glaciers. In: A.A.M. Holtslag, P.G. Duynkerke, and P.J. Jonker (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Ch. 6, 129–153.

  • Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C.J.J.P. Smeets, H.F. Vugts, and J. De Wolde (1999), Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: An overview, Bound.-Layer Meteor. 92, 1, 3–24, DOI: 10.1023/A:10011856114941.

    Article  Google Scholar 

  • Ohya, Y. (2001), Wind-tunnel study of atmospheric stable boundary layers over a rough surface, Bound.-Layer Meteor. 98, 1, 57–82, DOI: 10.1023/A:1018767829067.

    Article  Google Scholar 

  • Papadopoulos, K.H., C.G. Helmis, A.T. Soilemes, J. Kalogiros, P.G. Papageorgas, and D.N. Asimakopoulos (1997), The structure of katabatic flows down a simple slope, Quart. J. Roy. Met. Soc. 123, 542, 1581–1601, DOI: 10.1002/qj.49712354207.

    Article  Google Scholar 

  • Parmhed, O., J. Oerlemans, and B. Grisogono (2004), Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland, Quart. J. Roy. Met. Soc. 130, 598, 1137–1151, DOI: 10.1256/qj.03.52.

    Article  Google Scholar 

  • Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg und Sohn, Braunschweig.

    Google Scholar 

  • Rao, K.S., and H.F. Snodgrass, (1981), A nonstationary nocturnal drainage flow model, Bound.-Layer Meteor. 20, 3, 309–320, DOI: 10.1007/BF00121375.

    Article  Google Scholar 

  • Sagaut, P. (1998), Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin, 319 pp.

    Google Scholar 

  • Schumann, U. (1990), Large-eddy simulation of the up-slope boundary layer, Quart. J. Roy. Met. Soc. 116, 493, 637–670, DOI: 10.1002/qj.49711649307.

    Article  Google Scholar 

  • Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 631, 353–370, DOI: 10.1002/qj.217.

    Article  Google Scholar 

  • Skyllingstad, E.D. (2003), Large-eddy simulation of katabatic flows, Bound.-Layer Meteor. 106, 2, 217–243, DOI: 10.1023/A:1021142828676.

    Article  Google Scholar 

  • Stiperski, I., I. Kavčič, B. Grisogono, and D.R. Durran (2007), Including Coriolis effects in the Prandtl model for katabatic flow, Quart. J. Roy. Met. Soc. 133, 622, 101–106, DOI: 10.1002/qj.19.

    Article  Google Scholar 

  • Strang, E.J., and H.J.S. Fernando (2001), Vertical mixing and transports through a stratified shear layer, J. Phys. Oceanography 31, 8, 2026–2048, DOI: 10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    Article  Google Scholar 

  • Stull, R.B. (1988), An Introduction to Boundary-Layer Meteorology, Kluwer Academic Publishers, 666 pp.

  • Van den Broeke, M.R. (1996), Characteristics of the lower ablation zone of the West Greenland ice sheet for energy-balance modelling, Ann. Glaciol. 23, 160–166.

    Google Scholar 

  • Van den Broeke, M.R., N.P.M. van Lipzig, and E. van Meijgaard (2002), Momentum budget of the East-Antarctic atmospheric boundary layer: Results of a regional climate model, J. Atmos. Sci. 59, 3117–3129, DOI: 10.1175/1520-0469(2002)059<3117:MBOTEA>2.0.CO;2.

    Article  Google Scholar 

  • Whiteman, C.D. (1990), Observations of thermally developed wind systems in mountainous terrain. In: W. Blumen (ed.), Atmospheric Processes over Complex Terrain: Meteorological Monographs 23, 45, Am. Meteor. Soc., Boston, MA, Ch. 2, 5–42.

    Google Scholar 

  • Whiteman, C.D., and S. Zhong (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: Observations, J. Appl. Meteorol. Clim. 47, 7, 2023–2038, DOI: 10.1175/2007JAMC1669.1.

    Article  Google Scholar 

  • Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I.N. Esau, T. Mauritsen, and M.W. Miles (2008), Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes, Quart. J. Roy. Met. Soc. 134, 633, 793–799, DOI: 10.1002/qj.264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon L. Axelsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsen, S.L., van Dop, H. Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models. Acta Geophys. 57, 837–856 (2009). https://doi.org/10.2478/s11600-009-0042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0042-5

Key words

Navigation