Skip to main content
Log in

Chemical composition of the leaves of Reynoutria japonica Houtt. and soil features in polluted areas

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The study was conducted on six sites that are dominated by Japanese knotweed (Reynoutria japonica) and that vary in the level of industrialization and habitat transformation by humans. The aim of the research was to investigate the chemical-physical features of soil under a closed and dense canopy of R. japonica, the chemical composition of the R. japonica leaves, and to compare the content of certain elements in the soil-plant-soil system. The soil organic carbon (Corg) content varied from 1.38±0.004% to 8.2±0.047% and the maximum in leaves was 49.11±0.090%. The lowest levels of total nitrogen (Ntot) in soil were recorded on the heavily disturbed sites (till 0.227±0.021%). Soil pH varied greatly, ranging from acidic (pH=4.0) to neutral (pH=7.7). Heavy metal content differed significantly among the study sites. At all of the sites, both in the case of soil and plant leaves, Zn was a dominant element and its concentration ranged from 41.5 to 501.2 mg·kg−1 in soils and from 38.6 to 541.7 mg·kg−1 in leaves. Maximum accumulations of P (2103.3±15.3 mg·kg−1) and S (2571.7±17.6 mg·kg−1) were observed on the site that had been influenced by agricultural practices. The results obtained showed that R. japonica is able to accumulate high levels of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orians G.H., Site characteristics favoring invasions, In: Mooney H.A., Drake J.A. (Eds.), Ecology of biological invasions of North America and Hawaii, Springer, New York, 1986

    Google Scholar 

  2. Sax D.F., Stachowicz J.J., Brown J.H., Bruno J.F., Dawson M.N., Gaines S.D., et al., Ecological and evolutionary insights from species invasions, Trends Ecol. Evol., 2007, 22, 465–471

    Article  PubMed  Google Scholar 

  3. Walker L.R., Smith S.D., Impacts of invasive plants on community and ecosystem properties, In: Luken J.O., Thieret J.W. (Eds.), Assessment and management of plant invasions, Springer-Verlag, New York, 1996

    Google Scholar 

  4. Dassonville N., Vanderhoeven S., Vanparys V., Hayez M., Gruber W., Meerts P., Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe, Oecologia, 2008, 157, 131–140

    Article  PubMed  Google Scholar 

  5. Ehrenfeld J.G., Effects of exotic plant invasions on soil nutrient cycling processes, Ecosystems, 2003, 6, 503–523

    Article  CAS  Google Scholar 

  6. Haubensak K.A., D’Antonio C.M., Alexander J., Effects of nitrogen-fixing shrubs in Washington and coastal California, Weed Technol., 2004, 18, 1475–1479

    Article  Google Scholar 

  7. Hawkes C.V., Wren I.F., Herman D.J., Firestone M.K., Plant invasion alters nitrogen cycling by modifying the soil nitrifying community, Ecol. Lett., 2005, 8, 976–985

    Article  Google Scholar 

  8. Simon E., Vidic A., Braun M., Fábián I., Tóthmérész B., Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria, Environ. Sci. Pollut. Res., 2013, 20, 917–924

    Article  CAS  Google Scholar 

  9. Saggar S., McIntosh P., Hedley C., Knicker H., Changes in soil microbial biomass, metabolic quotient and organic matter turnover under Hieracium pilosella L., Biol. Fertil. Soils, 1999, 30, 232–238

    Article  CAS  Google Scholar 

  10. Kourtev P., Ehrenfeld J., Haggblom M., Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities, Soil Biol. Biochem., 2003, 35, 895–905

    Article  CAS  Google Scholar 

  11. Hobbie S., Effects of plant species on nutrient cycling, Trends Ecol. Evol., 1992, 7, 336–339

    Article  CAS  PubMed  Google Scholar 

  12. Milić D., Luković J., Ninkov J., Zeremski-Škorić T., Zorić L., Vasin J., et al., Heavy metal content in halophytic plants from inland and maritime saline areas, Cent. Eur. J. Biol., 2012, 7, 307–317

    Article  Google Scholar 

  13. Pajević S., Borišev M., Rončević S., Vukov D., Igić R., Heavy metal accumulation of Danube river aquatic plants — indication of chemical contamination, Cent. Eur. J. Biol., 2008, 3, 285–294

    Article  Google Scholar 

  14. Rahmonov O., Relation between vegetation and soil in the initial phase of succession in sandy areas, University of Silesia Press, Katowice, 2007

    Google Scholar 

  15. Van Breemen N., Finzi A.C., Plant-soil interaction: ecological aspects and evolutionary implications, Biogeochemistry, 1998, 42, 1–19

    Article  Google Scholar 

  16. Chapuis-Lardy L., Vanderhoeven S., Dassonville N., Koutika L.S., Meerts P., Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status, Biol. Fertil. Soils., 2006, 42, 481–489

    Article  Google Scholar 

  17. Rahmonov O., Malik I., Orczewska A., The influence of Salix acutifolia Willd. on soil formation in sandy areas, Pol. J. Soil Sci., 2004, 37, 77–84

    CAS  Google Scholar 

  18. Mummey D.L., Rillig M.C., The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field, Plant Soil, 2006, 288, 81–90

    Article  CAS  Google Scholar 

  19. Beerling D.J., Huntley B., Bailey J.P., Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces, J. Veg. Sci., 1995, 6, 269–282

    Article  Google Scholar 

  20. Ohwi J., The flora of Japan, Smithsonian Institution, Washington, 1965

    Google Scholar 

  21. Adachi N., Terashima I., Takahashi M., Central dieback of monoclonal stands of Reynoutria japonica in an early stage of primary succession on Mt. Fuji, Ann. Bot., 1996, 77, 477–486

    Article  Google Scholar 

  22. Tezuka Y., Development of vegetation in relation to soil formation in the volcanic island of Oshima, Izu, Japan, Jpn. J. Bot., 1961, 17, 371–402

    Google Scholar 

  23. Bailey J.P., Conolly A.P., Prize-winners to pariahs — A history of Japanese knotweed s.l. (Polygonaceae) in the British Isles, Watsonia, 2000, 23, 93–110

    Google Scholar 

  24. Conolly A.P., The distribution and history in the British Isles of some alien species of Polygonum and Reynoutria, Watsonia, 1977, 11, 291–311

    Google Scholar 

  25. Tokarska-Guzik B., The establishment and spread of alien plant species (Kenophytes) in the flora of Poland, University of Silesia Press, Katowice, 2005

    Google Scholar 

  26. Beerling D.J., Bailey J.P., Conolly A.P., Fallopia japonica (Houtt.) Ronse Decraene, J. Ecol., 1994, 82, 959–979

    Article  Google Scholar 

  27. Barney J.N., Tharayil N., Di Tommaso A., Bhowmik P., The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb. & Zucc. [=Fallopia japonica (Houtt.) Ronse Decr.], Can. J. Plant. Sci., 2006, 86, 887–905

    Article  Google Scholar 

  28. Weber E., Invasive plant species of the world. A reference guide to environmental weeds, CABI Publishing, Wallingford-Oxon, 2003

    Google Scholar 

  29. Child L., Wade M., Hathaway S., Strategic invasive plant management, linking policy and practice: a case study of Fallopia japonica in Swansea, South Wales (United Kingdom), In: Brundu G., Brock J., Camarda I., Child L., Wade M. (Eds.), Plant invasions: species ecology and ecosystem management, Bachuys Publishers, Leiden, 2001

    Google Scholar 

  30. Mandák B., Pyšek P., Bímová K., History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents, Preslia, 2004, 76, 15–64

    Google Scholar 

  31. Pyšek P., Mank B., Francírková T., Prach K., Persistence of stout clonal herbs as invaders in the landscape: a field test of historical records, In: Brundu G., Brock J., Camarda I., Child L., Wade M. (Eds.), Plant invasions: species ecology and ecosystem management, Bachuys Publishers, Leiden, 2001

    Google Scholar 

  32. Hollingsworth M.L., Bailey J.P., Hybridisation and clonal diversity in some introduced Fallopia species (Polygonaceae), Watsonia, 2000, 23, 111–121

    Google Scholar 

  33. Maertz J.C., Blossey B., Nuzzo V., Green frogs show reduced foraging success in habitats invaded by Japanese knotweed, Biodiv. Cons., 2005, 14, 2901–2911

    Article  Google Scholar 

  34. Simon E., Puky M., Braun M., Tóthmérész B., Assessment of the effects of urbanization on trace elements of toe bones, Environ. Monit. Assess., 2012, 184, 5749–5754

    Article  CAS  PubMed  Google Scholar 

  35. Dassonville N., Vanderhoeven S., Gruber W., Meerts P., Invasion by Fallopia japonica increases topsoil mineral nutrient concentration, Ecoscience, 2007, 14, 230–240

    Article  Google Scholar 

  36. Hirose T., Tateno M., Soil nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji, Oecologia, 1984, 61, 218–223

    Article  Google Scholar 

  37. Chiba N., Hirose T., Nitrogen acquisition and use in three perennials in the early stage of primary succession, Fun. Ecol., 1993, 7, 287–292

    Article  Google Scholar 

  38. Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z., The ecological and soil research [Badania ekologiczno-gleboznawcze], Polish Scientific Press, Warszawa, 2004, (in Polish)

    Google Scholar 

  39. Olesik J.W., Elemental Analysis Using ICP-OES and ICP/MS, Anal. Chem., 1991, 63, 12–21

    Google Scholar 

  40. MacNaeidhe F., Procedures and precautions used in sampling techniques and analysis of trace elements in plant matrices, Sci. Total Environ., 1995, 176, 25–31

    Article  CAS  Google Scholar 

  41. Markert B., Sample preparation (cleaning, drying, homogenisation) for trace element analysis in plant matrices, Sci. Total Environ., 1995, 176, 45–61

    Article  CAS  Google Scholar 

  42. Mizuno N., Takahashi A., Wagatsuma T., Mizuno T., Obata H., Chemical composition of guttation fluid and leaves of Petasites japonicus v. giganteus and Polygonum cuspidatum growing on ultramafic soil, Soil Sci. Plant Nutr., 2002, 48, 451–453

    Article  CAS  Google Scholar 

  43. Duda J.J., Freeman D.C., Emlen J.M., Belnap J., Kitchen S.G., Zak J.C., et al., Differences in native soil ecology associated with invasion of the exotic annual chenopod Halogeton glomeratus, Biol. Fertil. Soils, 2003, 38, 72–77

    Article  CAS  Google Scholar 

  44. Liao C., Peng R., Luo Y., Zhou X., Wu X., Fang C., et al., Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis, New Phytol., 2008, 177, 706–714

    Article  CAS  PubMed  Google Scholar 

  45. Vanderhoeven S., Dassonville N., Meerts P., Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium, Plant Soil, 2005, 275, 169–179

    Article  CAS  Google Scholar 

  46. Palmer J.P., Fallopia japonica (Japanese knotweed) in Wales, In: De Waal L.C., Child L., Wade M., Brock J.H. (Eds.), Ecology and management of invasive riverside plants, John Wiley & Sons, Chichester, 1994

    Google Scholar 

  47. Simon E., Braun M., Vidic A., Bogyó D., Fábián I., Tóthmérész B., Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna, Environ. Pollut., 2011, 159, 1229–1233

    Article  CAS  PubMed  Google Scholar 

  48. Sołtysiak J., Berchová-Bímová K., Vach M., Brej T., Heavy metals content in the Fallopia genus in Central European Cities — study from Wroclaw and Prague, Acta Bot. Sil., 2011, 7, 209–218

    Google Scholar 

  49. Kabata-Pendias A., Pendias H., Biogeochemia pierwiastków śladowych, Polish Scientific Press, Warszawa, 1993, (in Polish)

    Google Scholar 

  50. Hulina N., Dumija L., Ability of Reynoutria japonica Houtt. (Polygonaceae) to accumulate heavy metals, Period. Biol., 1999, 101, 233–235

    CAS  Google Scholar 

  51. Nishizono H., Kubota K., Suzuki S., Ishii F., Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats, Plant Cell Physiol., 1989, 30, 595–598

    CAS  Google Scholar 

  52. Tateno M., Hirose T., Nitrification and nitrogen accumulation in the early stages of primary succession on Mt. Fuji, Ecol. Res., 1987, 2, 113–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oimahmad Rahmonov.

About this article

Cite this article

Rahmonov, O., Czylok, A., Orczewska, A. et al. Chemical composition of the leaves of Reynoutria japonica Houtt. and soil features in polluted areas. cent.eur.j.biol. 9, 320–330 (2014). https://doi.org/10.2478/s11535-013-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0267-9

Keywords

Navigation