Skip to main content
Log in

Assessment of the effects of urbanization on trace elements of toe bones

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Amphibians, particularly frogs and toads, are increasingly used as bioindicators of contaminant accumulation in pollution studies. We developed an analytical technique to analyse their elemental contents based on a small amount of toe bone samples. This method is environment-friendly as, unlike traditional methods, it is not necessary to kill animals during sampling. Using this technique, we explored the effects of urbanization on the elemental contents of toe bones. Bufo bufo specimens were collected from an urban and two rural ponds. The ratios of Ca and P at the ponds were: 20.5% Ca and 14.6% P at the urban pond and 30.4% and 29.6% Ca, 22.4% and 21.7% P at the rural ponds, respectively. For the other elements, the following percentage ratios were found: 0.7% B, 0.3% Mg and 0.06% Zn at the urban pond and 1.1% and 0.4% B, 0.4% Mg and 0.05% Zn at the rural ponds, respectively. Canonical discriminant analysis indicated the separation of the urban and the rural ponds based on the elemental concentrations of toe bones. Significant differences were found between the concentrations of Ca, P, Mg, B and Zn at the urban and the rural ponds (p < 0.05). Anthropogenic activity was found to have effects on the elemental contents of toe bones in the urbanized area. Our study also demonstrated that the developed method was appropriate for the elemental analysis of small samples to assess the effects of urbanization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blaustein, A. R., Romansic, J. M., Kiesecker, J. M., & Hatch, A. C. (2003). Ultraviolet radiation, toxic chemicals, and amphibian population declines. Diversity and Distribution, 9, 123–140.

    Article  Google Scholar 

  • Bruce, R. C., Castanet, J., & Francillon-Vieillot, H. (2002). Skeletochronological analysis of variation in age structure, body size, and life history in three species of Desmognathine salamanders. Herpetologica, 58, 181–193.

    Article  Google Scholar 

  • Demichellis, S. O., De Latorrei, F. R., Ferrari, L., Garcia, M. E., & Salibiáni, A. (2001). Tadpoles assay: Its application to a water toxicity assessment of a polluted urban river. Environmental Monitoring and Assessment, 68, 63–73.

    Article  Google Scholar 

  • Fenoglio, C., Grosso, A., Boncompagni, E., Milanesi, G., Gandini, C., & Barni, S. (2006). Morphofunctional evidence of changes in principal and mitochondria-rich cells in the epidermis of the frog Rana kl. esculenta living in a polluted habitat. Archives of Environmental Contamination and Toxicology, 51, 690–702.

    Article  CAS  Google Scholar 

  • Flyaks, N. L., & Borkin, L. J. (2004). Morphological abnormalities and heavy metal concentrations in anurans of contaminated areas, eastern Ukraine. Applied Herpetology, 1, 229–264.

    Article  Google Scholar 

  • Green, E. D. (2001). Toe-clipping of frogs and toads. Amphibian Research and Monitoring Initative. Accessed 2004 from http://www.nwhc.usgs.gov/publications/amphibian_research_procedures/toe_clipping.jsp.

  • Hartel, T., & Nemes, S. (2006). Assessing the effect of toe clipping on yellow bellied toads. Acta Zoologica Academiae Scientiarum Hungaricae, 52, 359–366.

    Google Scholar 

  • Hayes, T. B., Haston, K., Tsui, M., Hoang, A., Haeffele, C., & Vonk, A. (2002). Feminization of male frogs in the wild. Nature, 419, 895–900.

    Article  CAS  Google Scholar 

  • Herkovits, J., & Helguero, L. A. (1998). Copper toxicity and copper–zinc interactions in amphibian embryos. The Science of the Total Environment, 221, 1–10.

    Article  CAS  Google Scholar 

  • Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendori, D., et al. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 73, 175–192.

    Article  CAS  Google Scholar 

  • Icochea, J., Quispitupac, E., Portilla, A., & Ponce, E. (2002). Framework for assessment and monitoring of amphibians and reptiles in the Lower Urubamba Region, Peru. Environmental Monitoring and Assessment, 76, 55–67.

    Article  Google Scholar 

  • James, S. M., & Little, E. E. (2003). The effects of chromic cadmium exposure on American toad (Bufo americanus). Environmental Toxicology and Chemistry, 22, 377–380.

    CAS  Google Scholar 

  • Janus, A. M., Faryna, M., Haberko, K., Rakowska, A., & Panz, T. (2008). Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchimica Acta, 161, 349–353.

    Article  CAS  Google Scholar 

  • Johansson, M., Rasanen, K., & Merila, J. (2001). Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria. Aquatic Toxicology, 54, 1–14.

    Article  CAS  Google Scholar 

  • Johnson, P. T. J., Lunde, K. B., Ritchie, E. G., & Launer, A. E. (1999). The effect of trematode infection on amphibian limb development and survivorship. Science, 284, 802–804.

    Article  CAS  Google Scholar 

  • Klepinger, L. L. (1984). Nutritional assessment from bone. Annual Review of Anthropology, 13, 75–96.

    Article  Google Scholar 

  • Kriger, K. M., Hines, H. B., Hyatt, A. D., Boyle, D. G., & Hero, J. M. (2006). Techniques for detecting chytridiomycosis on wild frogs: Comparing histology with real-time Taqman PCR. Diseases of Aquatic Organisms, 71, 141–148.

    Article  CAS  Google Scholar 

  • Loumbourdis, N. S., Kostaropoulos, I., Theodoropoulou, B., & Kalmanti, D. (2007). Heavy metal accumulation and methallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium. Environmental Pollution, 145, 787–792.

    Article  CAS  Google Scholar 

  • McCarthy, M. A., & Parris, K. M. (2004). Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology, 41, 780–786.

    Article  Google Scholar 

  • Mizgireuv, I. V., Flax, N. L., Borkin, L. J., & Khudoley, V. V. (1984). Dysplastic lesions and abnormalities in amphibians associated with environmental conditions. Neoplasma, 31, 175–181.

    CAS  Google Scholar 

  • Noonan, B. P., & Gaucher, P. (2006). Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology, 15, 4425–4435.

    Article  CAS  Google Scholar 

  • Oudadesse, H., Martin, S., Derrien, A. C., Lucas-Girot, A., Cathelineau, G., & Blondiau, G. (2004). Determination of Ca, P, Sr and Mg in the synthetic biomaterial aragonite by NAA. Journal of Radioanalytical and Nuclear Chemistry, 262, 479–483.

    Article  CAS  Google Scholar 

  • Pavel, J., & Kucera, M. (1986). Cumulation of heavy metals in frog. Ekológia, 5, 431–440.

    CAS  Google Scholar 

  • Perez-Coll, C. S., Herkovits, J., Fridman, O., Daniel, P., & D’Eramo, J. L. (1997). Metallothioneins and cadmium uptake by the liver in Bufo arenarum. Environmental Pollution, 97, 311–315.

    Article  CAS  Google Scholar 

  • Puky, M., & Oertel, N. (1997). On the protective role of maternal organism in amphibians. Opuscula Zoologica, 29–30, 125–132.

    Google Scholar 

  • Rowe, C. L., Hopkins, W. A., & Coffman, V. R. (2001). Failed recruitment of southern toads (Bufo terrestris) in a trace element-contaminated breeding habitat: Direct and indirect effects that may lead to a local population sink. Archives of Environmental Contamination and Toxicology, 40, 399–405.

    Article  CAS  Google Scholar 

  • Simon, E., Braun, M., & Tóthmérész, B. (2010). Non-destructive method of frog (Rana esculenta L.) skeleton elemental analysis used during environmental assessment. Water, Air, and Soil Pollution, 209, 467–471.

    Article  CAS  Google Scholar 

  • Sparling, D. W., Linder, G., & Bishop, C. A. (Eds.). (2000). Ecotoxicology of amphibians and reptiles. Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC), p. 904.

  • St. Amour, V., & Lesbarréres, D. (2007). Genetic evidence of Ranavirus in toe clips: An alternative to lethal sampling methods. Conservation Genetics, 8, 1247–1250.

    Article  Google Scholar 

  • Stolyar, O. B., Loumbourdis, N. S., Falfushinska, H. I., & Romanchuk, L. D. (2008). Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 54, 107–113.

    Article  CAS  Google Scholar 

  • Takashi, M., & Masafumi, M. (2009). The validity of skeletochronology in estimating ages of Japanese clouded salamanders, Hynobius nebulosus (Amphibia, Caudata). Current Herpetology, 28, 41–48.

    Article  Google Scholar 

  • Unrine, J. M., Hopkins, W. A., Romanek, C. S., & Jackson, B. P. (2007). Bioaccumulation of trace elements in omnivorous amphibian larvae: Implications for amphibian health and contaminant transport. Environmental Pollution, 149, 182–192.

    Article  CAS  Google Scholar 

  • Welsh, H. H., & Ollivier, L. M. (1998). Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecological Applications, 8, 1118–1132.

    Google Scholar 

  • Zar, J. H. (1996). Biostatistical analysis. New Jersey: Prentice Hall. 662 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, E., Puky, M., Braun, M. et al. Assessment of the effects of urbanization on trace elements of toe bones. Environ Monit Assess 184, 5749–5754 (2012). https://doi.org/10.1007/s10661-011-2378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2378-y

Keywords

Navigation