Skip to main content
Log in

Limited gene flow in Uca minax (LeConte 1855) along a tidally influenced river system

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

For crab larvae, swimming behaviors coupled with the movement of tides suggests that larvae can normally move upstream within estuaries by avoiding ebb tides and actively swimming during flood tides (i.e., flood-tide transport [FTT]). Recently, a 1-D transport model incorporating larval behavior predicted that opposing forces of river discharge and tidal amplitude in the Pee Dee River/Winyah Bay system of South Carolina, USA, could limit dispersal within a single estuary for downstream transport as well as become a dispersal barrier to recruitment of late stage larvae to the freshwater adult habitats of Uca minax (LeConte 1855). We sequenced 394-bp of the mitochondrial cytochrome apoenzyme b for 226 adult U. minax, from four locales along a 49-km stretch of the Pee Dee River/Winyah Bay estuary, above and below the boundary of salt intrusion. Results of an analysis of molecular variance (AMOVA) and an exact test of population differentiation showed a small, but statistically significant (α=0.05) population subdivision among adults of the 4 subpopulations, as well as all subpopulations being significantly differentiated (α=0.05). This pattern fitted with model predictions, which implies that larval transport within the tidally influenced river system is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandifer P.A., The role of pelagic larvae in recruitment to populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia, Estuar. Coast. Mar. Sci. 1975, 3, 269–279

    Article  Google Scholar 

  2. Strathmann R.R., Selection for retention of export of larvae in estuaries, In: Kennedy V.S. (Ed.), Estuarine Comparisons, Academic Press, New York, 1982

    Google Scholar 

  3. Queiroga H., Blanton J., Interactions between behavior and physical forcing in the control of horizontal transport of decapod crustacean larvae, Adv. Mar. Biol., 2004, 47, 107–214

    Article  Google Scholar 

  4. Bilton D.T., Paula J., Bishop J.D.D., Dispersal, genetic differentiation and speciation in estuarine organisms, Estuar. Coast. Shelf Sci., 2002, 55, 937–952

    Article  Google Scholar 

  5. DeCoursey P.J., Egg-hatching rhythms in three species of fiddler crabs, In: Naylor E., Hartnoll R.G. (Eds.) Cyclic Phenomena in Marine Plants and Animals, Proceedings of the 13th European Marine Biology Symposium, Pergamon, Oxford, 1979, 399–406

    Google Scholar 

  6. DeCoursey P.J., Cyclic reproduction of fiddler crabs, Uca: A model for estuarine adaptation, Estuaries, 1981, 4, 263

    Google Scholar 

  7. Christy J.H., Adaptive significance of semilunar cycles of larval release in fiddler crabs (Genus Uca): test of an hypothesis, Biol. Bull., 1982, 163, 251–263

    Article  Google Scholar 

  8. Christy J.H., Stancyk S.E., Timing of larval production and flux of invertebrate larvae in a well-mixed estuary, In: Kennedy V.S. (Ed.) Estuarine Comparisons, Academic Press, New York., 1982

    Google Scholar 

  9. Morgan S.G., Selection on hatching rhythms and dispersal patterns of estuarine crab larvae: avoidance of physiological stress by larval export? J. Exp. Mar. Biol. Ecol., 1987, 113, 71–78

    Article  Google Scholar 

  10. Morgan S.G., Christy J.H., Adaptive significance of the timing of larval release by crabs, Am. Nat., 1995, 145, 457–479

    Article  Google Scholar 

  11. DeVries M.C., Tankersley R.A., Forward R.B., Jr., Kirby-Smith W.W., Luettich R.A., Abundance of estuarine crab larvae is associated with tidal hydrologic variables, Mar. Biol., 1994, 118, 403–413

    Article  Google Scholar 

  12. Tankersley R.A., Welch J.M., Forward R.B., Jr., Settlement times of blue crab (Callinectes sapidus) megalopae during flood-tide transport, Mar. Biol., 2002, 141, 863–875

    Article  Google Scholar 

  13. Tankersley R.A., Forward R.B., Jr., Endogenous swimming rhythms in estuarine crab megalopae: implications for flood-tide transport, Mar. Biol., 1994, 118, 415–423

    Article  Google Scholar 

  14. Tankersley R.A., McKelvey L.M., Forward R.B., Jr., Responses of estuarine crab megalopae to pressure, salinity and light: implications for flood tide transport, Mar. Biol., 1995, 122, 391–400

    Article  Google Scholar 

  15. Welch J.M., Forward R.B., Jr., Howd P.A., Behavioral responses of blue crab Callinectes sapidus postlarvae to turbulence: implications for selective tidal stream transport, Mar. Ecol. Progr. Ser., 1999, 179, 135–143

    Article  Google Scholar 

  16. Welch J.M., Forward R.B., Jr., Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence, Mar. Biol., 2001, 139, 911–918

    Article  Google Scholar 

  17. van Montfrans J., Ryer C.H., Orth, R.J., Substrate selection by blue crab Callinectes sapidus megalopae and first juvenile instars, Mar. Ecol. Progr. Ser., 2003, 260, 209–217

    Article  Google Scholar 

  18. Forward R.B., Jr., Rittschof D., Photoresponses of crab larvae in offshore and estuarine waters: implications for transport, J. Exp. Mar. Biol. Ecol., 1994, 182, 183–192

    Article  Google Scholar 

  19. Borgianini S.A., Styles R., Brodie R.J., Simple model of megalopal transport in narrow riverdominated estuaries, Mar. Ecol. Progr. Ser., 2012, 452, 179–191

    Article  Google Scholar 

  20. Crane J., Fiddler Crabs of the World, Princeton University Press, Princeton, 1975

    Google Scholar 

  21. Montague C.L., A natural history of temperate western Atlantic fiddler crabs (Genus Uca) with reference to their impact on the salt marsh, Contrib. Mar. Sci., 1980, 23, 25–55

    CAS  Google Scholar 

  22. Gray E.H., Ecological and life history aspects of the red-jointed fiddler crab, Uca minax (Le Conte), region of Solomon Island Maryland, Chesapeake Biol. Lab. Publ., 1942, 51, 3–20

    Google Scholar 

  23. Teal J.M., Distribution of fiddler crabs in Georgia salt marshes, Ecology, 1958, 39,185–193

    Google Scholar 

  24. Salmon M., Seiple W.H., Morgan S.G., Hatching rhythms of fiddler crabs and associated species at Beaufort, North Carolina, J. Crust. Biol., 1986, 6, 24–36

    Article  Google Scholar 

  25. Hyman O.W., The development of Gelasimus after hatching, J. Morph., 1920, 33, 485–525

    Article  Google Scholar 

  26. López-Duarte P.C., Tankersley R.A., Developmental shift in the selective tidal-stream transport behavior of larvae of the fiddler crab Uca minax (LeConte), J. Exp. Mar. Biol. Ecol., 2009, 368, 169–180

    Article  Google Scholar 

  27. Dennenmoser S., Thiel M., Schubart C.D., High genetic variability with no apparent geographic structuring in the mtDNA of the amphidromous river shrimp Cryphiops caementarius (Decapoda: Palaemonidae) in Northern-Central Chile, J. Crust. Biol., 2010, 30, 762–766

    Article  Google Scholar 

  28. Darnell M.Z., Rittschof D., Forward R.B., Jr., Endogenous swimming rhythms underlying the spawning migration of the blue crab, Callinectes sapidus: ontogeny and variation with ambient tidal regime, Mar. Biol., 2010, 157, 2415–2425

    Article  Google Scholar 

  29. Herborg L.M., Rushton L.P., Clark A.S., Bentley M.G., Spread of the Chinese mitten crab Eriocheir sinensis (H. Milne Edwards) in continental Europe: analysis of a historical data set, Hydrobiologia, 2003, 503, 21–28

    Article  Google Scholar 

  30. Williams A.B., Shrimps, Lobsters and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida, Smithsonian Institution Press, Washington, DC, 1984

    Google Scholar 

  31. Staton J.L., Wickliffe L.C., Garlitska L., Villanueva S.M., Coull B.C., Genetic isolation discovered among previously described sympatric morphs of a meiobenthic copepod, J. Crust. Biol., 2005, 25, 551–557

    Article  Google Scholar 

  32. Clement M., Posada D., Crandall K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, 9, 1657–1659

    Article  PubMed  CAS  Google Scholar 

  33. Tamura K., Peterson D., Peterso N., Stecher G., Nei M., Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molec. Biol. Evol., 2011, 28, 2731–2739

    Article  PubMed  CAS  Google Scholar 

  34. Excoffier L., Lischer H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, 10, 564–567

    Article  PubMed  Google Scholar 

  35. Excoffier L., Smouse P.E., Quattro J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes — application to human mitochondrial-DNA restriction data, Genetics, 1992, 131, 479–491

    PubMed  CAS  Google Scholar 

  36. Raymond M., Rousset F., An exact test for population differentiation, Evolution, 1995, 49, 1280–1283

    Article  Google Scholar 

  37. Kimura M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, 16, 111–120

    Article  PubMed  CAS  Google Scholar 

  38. Saitou N., Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, 4, 406–425

    PubMed  CAS  Google Scholar 

  39. Johnson M.S., Black R., Pattern beneath the chaos: the effect of recruitment on the genetic patchiness of an intertidal limpet, Evolution, 1984, 38, 1371–1383

    Article  Google Scholar 

  40. Hedgecock D., Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. Mar. Sci., 1986, 39, 550–564

    Google Scholar 

  41. Hellberg M.E., Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities, Evolution, 1996, 50, 1167–1175

    Article  Google Scholar 

  42. Scheltema R.S., On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods, In: Battaglia B., Beardmore J.A., (Eds.) Marine Organisms: Genetics, Ecology and Evolution, Plenum Press, New York and London, 1978

    Google Scholar 

  43. Scheltema R.S., On dispersal and planktonic larvae of benthic invertebrates: An eclectic overview and summary of problems, Bull. Mar. Sci., 1986, 39, 290–322

    Google Scholar 

  44. Baums I.B., Miller M.W., Hellberg M.E., Geographic variation in clonal structure in a reef building Caribbean coral, Acropora palmata, Ecol. Mono., 2006, 76, 503–519

    Article  Google Scholar 

  45. Hare M.P., Guenther C., Fagan W.F., Nonrandom larval dispersal can steepen marine clines, Evolution, 2005, 59, 2509–2517

    PubMed  Google Scholar 

  46. Berglund A., Lagercrantz U., Genetic differentiation in populations of two Palaemon prawn species at the Atlantic east coast: does gene flow prevent local adaptation? Mar. Biol., 1983, 77, 49–57

    Article  Google Scholar 

  47. Bert T.M., Speciation in western Atlantic stone crabs (genus Menippe): The role of geographical processes and climatic fluctuations in the formation and distribution of species, Mar. Biol., 1986, 93, 157–170

    Article  Google Scholar 

  48. Bertness M.D., Gaines S.D., Larval dispersal and local adaptation in acorn barnacles, Evolution, 1993, 47, 316–320

    Article  Google Scholar 

  49. Reeb C.A., Avise J.C., A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica, Genetics, 1990, 124, 397–406

    CAS  Google Scholar 

  50. Brodie R.J., Styles R., Borgianini S.A., Godley J., Butler K., Larval mortality during export to the sea in the fiddler crab Uca minax, Mar. Biol., 2007, 152, 1283–1291

    Article  Google Scholar 

  51. Cook B.D., Pringle C.M., Hughes J.M., Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean island, Mol. Ecol., 2008, 17, 1066–1075

    Article  PubMed  CAS  Google Scholar 

  52. Keenan C.P., Recent evolution of population structure in Australian barramundi, Lates calcarifer (Bloch): an example of isolation by distance in one dimension, Aust. J. Mar. Freshw. Res., 1994, 45, 1123–1148

    Article  Google Scholar 

  53. Van Engel W.A., The blue crab and its fishery in Chesapeake Bay. Part I. Reproduction, early development, growth and migration, Commer. Fish. Rev., 1958, 20, 6–17

    Google Scholar 

  54. Millikin M.R., Williams A.B., Synopsis of biological data on the blue crab, Callinectes sapidus Rathbun. FAO Fisheries Synopsis, 138, NOAA Tech. Rep. NMFS I, 1984

    Google Scholar 

  55. Tankersley R.A., Wieber M.G., Sigala M.A., Kachurak K., Migratory movements of ovigerous blue crabs, Callinectes sapidus: evidence for selective tidal-stream transport, Biol. Bull., 1998, 195, 168–173

    Article  Google Scholar 

  56. Anger K., Harms J., Montú M., De Bakker C., Effects of salinity on the larval development of a semiterrestrial tropical crab, Sesarma angustipes (Decapoda: Grapsidae), Mar. Ecol. Prog. Ser., 1990, 62, 89–94

    Article  Google Scholar 

  57. Anger K., Salinity as a key parameter in the larval biology of decapod crustaceans, Invert. Reprod. Develop., 2003, 43, 29–45

    Article  Google Scholar 

  58. Anger K., Torres G., Charmantier-Daures M., Charmantier G., Adaptive diversity in congeneric coastal crabs: Ontogenetic patterns of osmoregulation match life-history strategies in Armases spp (Decapoda, Sesarmidae), J. Exp. Mar. Biol. Ecol., 2008, 367, 28–36

    Article  Google Scholar 

  59. Charmantier G., Ontogeny of osmoregulation in crustaceans: a review, Invert. Reprod. Develop., 1998, 33,177–190

    Article  CAS  Google Scholar 

  60. Giménez L., Anger K., Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851, J. Exp. Mar. Biol. Ecol., 2001, 260, 241–257

    Article  PubMed  Google Scholar 

  61. Anger K., Torres G., Gimenez L., Metamorphosis of a sesarmid river crab, Armases roberti: stimulation by adult odours versus inhibition by salinity stress, Mar. Freshw. Behav. Physiol., 2006, 39, 269–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Staton.

About this article

Cite this article

Staton, J.L., Borgianini, S.A., Gibson, I.B. et al. Limited gene flow in Uca minax (LeConte 1855) along a tidally influenced river system. cent.eur.j.biol. 9, 28–36 (2014). https://doi.org/10.2478/s11535-013-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0200-7

Keywords

Navigation