Skip to main content
Log in

Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum aestivum callus

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

In vitro cultures of Leucojum aestivum are considered as an alternative for the production of galanthamine, which is used for the symptomatic treatment of Alzheimer’s disease. We studied the effects of auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 4-amino-3,5,6-trichloropicolinic acid (picloram), 3,6-dichloro-o-anisic acid (dicamba) at concentrations of 25 and 50 µM on the induction of embryogenic callus and its capacity to induce somatic embryogenesis and alkaloid accumulation. The embryogenic response of the explants was from 30% for 25 µM of dicamba to 100% for picloram (for both 25 and 50 µM). 2,4-D (50 µM) stimulated greater callus proliferation and somatic embryo induction as compared to the other auxins. Polyethylene glycol (PEG) stimulated somatic embryo maturation. Callus grown on media containing 50 µM of auxins produced fewer phenolic compounds as compared with callus grown on media containing 25 µM of auxins. GC-MS analyses showed seven alkaloids in the in vivo bulbs and two to four in callus culture. Galanthamine was detected in callus cultivated with 2,4-D (25, 50 µM), picloram (25 µM), and dicamba (50 µM). Other alkaloids, trisphaeridine, tazettine, and 11-hydroxyvittatine were accumulated only in callus growing on medium with picloram (50 µM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

BA:

benzyladenine

2,4-D:

2,4-dichlorophenoxyacetic acid

FW:

fresh weight

MS:

Murashige and Skoog

NAA:

naphthalene acetic acid

PEG:

polyethylene glycol

SEM:

scanning electron microscopy

References

  1. Luttmann E., Linnemann E., Fels G., Galanthamine, as bis-functional ligand for the acetylcholinesterase, J. Mol. Model., 2002, 8, 208–216

    Article  PubMed  CAS  Google Scholar 

  2. Heinrich M., Lee Teoh H., Galanthamine from snowdrop-the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge, J. Ethnopharmacol., 2004, 92, 147–62

    Article  PubMed  CAS  Google Scholar 

  3. Szlavik L., Gyuris A., Forgo P., Molnar J., Hohmann J., Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids, Planta Medica, 2004, 70, 871–873

    Article  PubMed  CAS  Google Scholar 

  4. Berkov S., Georgieva L., Kondakova V., Atanassov A., Viladomat F., Bastida J., et al., Plant sources of galanthamine: phytochemical and biotechnological aspects, Biotechnol.&Biotechnol. EQ, 2009, 23, 1170–1176

    CAS  Google Scholar 

  5. Guillou C., Beunard J.L., Gras E., Thal C., An efficient total synthesis of (±)-galanthamine, Angew. Chem. Int., 2001, 40, 4745–4746

    Article  CAS  Google Scholar 

  6. Berkov S., Pavlov A., Illieva M., Burrus M., Popov S., Stanilova M., CGC-MS of alkaloids in Leucojum aestivum plants and their in vitro cultures, Phytochem. Anal., 2005, 16, 98–103

    Article  PubMed  CAS  Google Scholar 

  7. Magnus P., Sane N., Fauber B.P., Lynch V., Concise syntheses of (−)-galanthamine and (±)-codeine via intramolecular alkylation of a phenol derivative, J. Am. Chem. Soc., 2009, 131, 16045–16047

    Article  PubMed  CAS  Google Scholar 

  8. Briskin D.P., Biotechnological methods for selection of high-yielding cell lines and production of secondary metabolites in medicinal plants, In: Kayser O., Quax W. (Eds.), Medicinal Plant Biotechnology. From Basic Research to Indrustrial Applications, vol. 1, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007

    Google Scholar 

  9. Diop M.F., Ptak A., Chretien F., Henry M., Chapleur Y., Laurain-Mattar D., Galanthamine content of bulbs and in vitro cultures of Leucojum aestivum L., Nat. Prod. Com., 2006, 1, 475–479

    CAS  Google Scholar 

  10. Pavlov A., Berkov S., Courot E., Gocheva T., Tuneva D., Pandova B., et al., Galanthamine production by Leucojum aestivum in vitro systems, Process Biochemistry, 2007, 42, 734–739

    Article  CAS  Google Scholar 

  11. Ptak A., El Tahchy A., Dupire F., Boisbrun M., Henry M., Chapleur Y., et al., LCMS and GC-MS for the screening of alakaloids in natural and in vitro extracts of Leucojum aestivum, J. Nat. Prod., 2009, 72, 142–147

    Article  PubMed  CAS  Google Scholar 

  12. Ptak A., El Tahchy A., Wyżgolik G., Henry M., Laurain-Mattar D., Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures, Plant Cell Tiss. Org. Cult., 2010, 102, 61–67

    Article  CAS  Google Scholar 

  13. Stanilova M.I., Molle E.D., Yanev S.G., Galanthamine production by Leucojum aestivum cultures in vitro, In: Cordell A (Ed.), The Alkaloids. Chemistry and Biology, vol 68, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford Paris, San Diego, San Francisco, Sydney, Tokyo, 2010

    Google Scholar 

  14. Ivanov I., Georgiev V., Georgiev M., Ilieva M., Pavlov A., Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology, Appl. Biochem. Biotechnol., 2011, 163, 268–277

    Article  PubMed  CAS  Google Scholar 

  15. Ivanov, I., Georgiev, V., Berkov S., Pavlov A., Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions, J. Plant Physiol., 2012, 169, 206–211

    Article  PubMed  CAS  Google Scholar 

  16. El Tahchy A., Bordage S., Ptak A., Dupire F., Barre E., Guillot C., et al., Effects of sucrose and plant growth regulators on acetylcholinesterase inhibitory activity of alkaloids accumulated in shoot cultures of Amaryllidaceae, Plant Cell Tiss. Organ Cult., 2011, 106, 381–390

    Article  CAS  Google Scholar 

  17. Laurain-Mattar D., Production of alkaloids in plant cell and tissue cultures, In: Ramawat K.G., Mérillon J.M. (Eds.), Bioactive Molecules and Medicinal Plants, Springer-Verlag, Berlin, Heidelberg, 2008

    Google Scholar 

  18. Jiménez V.M., Thomas C., Participation of plant hormones in determination and progression of somatic embryogenesis, In: Mujib A., Šamaj J. (Eds.), Plant Cell Monographs. Somatic Embryogenesis, 2, Springer, Berlin, 2006

    Google Scholar 

  19. Von Arnold S., Somatic embryogenesis, In: George E.F., Hall M.A., de Klerk G.J. (Eds.), Plant Propagation by Tissue Culture, 3rd Edition, Springer, The Netherlands, 2008

    Google Scholar 

  20. Filipov M., Miroshnichenko D., Vernikovskaya D., Dolgov S., The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat, Plant Cell Tissue Organ Cult., 2006, 84, 213–222

    Google Scholar 

  21. Bach A. Interaction between type of tissue and growth regulators in somatic embryogenesis of hyacinth, Acta Physiol. Plant., 1998, 20, 15

    Article  Google Scholar 

  22. Lu W., Enomoto K., Fukunaga Y., Kuo C., Regeneration of petals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. Importance of explant age and exogenous hormones, Planta, 1988, 175, 478–484

    Article  CAS  Google Scholar 

  23. Ptak A., Bach A., Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures, In Vitro Cell. Dev. Biol. Plant, 2007, 43, 35–39

    Article  CAS  Google Scholar 

  24. Tribulato A., Remotti P.C., Loffler H.J.M., Somatic embryogenesis and plant regeneration in Lilium longiflorum Thunb., Plant Cell Rep., 1997, 17, 113–118

    Article  CAS  Google Scholar 

  25. Murphy A., Peer W.A., Taiz L., Regulation of auxin transport by aminopeptidases and endogenous flavonoids, Planta, 2000, 211, 315–324

    Article  PubMed  CAS  Google Scholar 

  26. Schoenwaelder M.A., Wiencke C., Phenolic compounds in the embryo development of several northern hemisphere fucoids, Plant Biol., 2000, 2, 24–33

    Article  CAS  Google Scholar 

  27. Ptak A., Cierniak O., Regeneration of summer snowflake (Leucojum aestivum L.) in in vitro cultures, Biotechnologia, 2003, 4, 239–245

    Google Scholar 

  28. Murashige T., Skoog F., Revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, 15, 473–497

    Article  CAS  Google Scholar 

  29. Pathan A.K., Bond J., Gaskin R.E., Sample preparation for scanning electron microscopy of plant surfaces-Horses for courses, Micron, 2008, 39, 1049–1061

    Article  PubMed  CAS  Google Scholar 

  30. Singleton V.S., Rossi Jr J.A., Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagent, Amer. J. Enol. Viticult., 1965, 16, 144–158

    CAS  Google Scholar 

  31. Malik M., Molenda A., Formation of narcissus (Narcissus L.) somatic embryos from callus tissue in temporary immersion system with RITA and on solid media, Adv. Agr. Sci. Problem Issue, 2008, 525, 237–243, (in Polish)

    Google Scholar 

  32. Sage D., Lynn J., Hammatt N., Somatic embryogenesis in Narcissus pseudonarcissus cvs. Golden Harvest and St. Keverne, Plant Sci., 2000, 2, 209–216

    Article  Google Scholar 

  33. Zhang T., Cao Z.Y., Wang X.Y., Induction of somatic embryogenesis and plant regeneration from cotyledon and hypocotyls explants of Eruca sativa Mill., In Vitro Cell. Dev. Biol. Plant, 2005, 41, 655–657

    Article  Google Scholar 

  34. Moon H.K., Park S.Y., Kim Y.W., Kim S.H., Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree, In Vitro Cell. Dev. Biol. Plant, 2008, 44, 119–127

    Article  CAS  Google Scholar 

  35. Ptak A., Somatic embryogenesis in in vitro culture of Leucojum vernum L., In: Jain S.M., Ochatt S.J. (Eds.), Protocols for In Vitro Propagation of Ornamental Plants, Springer, New York, Dordrecht, Heidelberg, London, 2010

    Google Scholar 

  36. Stasolla C., Zyl L., Egertsdotter U., Craig D., Liu W., Sederoff R.R., The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos, Plant Physiol., 2003, 131, 49–60

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka N., Shimomura K., Ishimaru K., Tanin production in callus cultures of Quercus acutissima, Phytochem., 1995, 40, 1151–1154

    Article  CAS  Google Scholar 

  38. Close C.D., Davies N.W., Beadle Ch.L., Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities, Aust. J. Plant Physiol., 2001, 28, 269–278

    CAS  Google Scholar 

  39. Skrzypek E., Szechynska-Hebda M., Dąbrowska G., The influence of phenolics accumulation on callus regeneration abilities of chosen plant species, Adv. Agr. Sci. Problem Issue, 2007, 523, 203–212, (in Polish)

    Google Scholar 

  40. Bach A., Paw’owska B., Hura K., The level of phenolic compounds at various developmental stages in in vitro cultures of Galanthus elwesii Hook., Adv. Agr. Sci. Problem Issue, 2009, 534, 13–21, (in Polish)

    Google Scholar 

  41. Hrubcová M., Cvirková M., Eder J., Peroxidase activities and contents of phenolic acids in embryogenic and nonembryogenic alfalfa cell suspension cultures, Biol. Plant., 1994, 36, 75–182

    Article  Google Scholar 

  42. Cvirková M., Binarová P., Eder J., Vágner M., Hrubcová M., Zoń J., et al., Effect of inhibition of phenylanine ammonia-lyase activity on growth of alfalfa cell suspensions culture: alterations in mitotic index, ethylene production, and contents of phenolics, cytokinins and poliamines, Physiol. Plant., 1999, 107, 329–337

    Article  Google Scholar 

  43. Beruto M., Cuiri P., Debergh P., Callus growth and somatic embryogenesis in thalamus tissue of Ranunculus asiaticus L. cultivated in vitro: cytokinin effect and phenol metabolism, In Vitro Cell. Dev. Biol. Plant, 1996, 32, 154–160

    Article  CAS  Google Scholar 

  44. Codina C., Narcissus and Daffodil. The genus Narcissus, In: Hanks G. (Ed.), Medicinal and Aromatic Plants — Industrial Profiles, Taylor and Francis, London, New York, 2002

    Google Scholar 

  45. Ptak A., Simlat M., Kwiecień M., Laurain-Mattar D., Leucojum aestivum plants propagated in in vitro bioreactor culture and on solid media containing cytokinins, Eng. Life Sci., (in press), DOI: 10.1002/elsc.201200109

  46. Khan T., Krupadanam D., Anwar S.Y., The role of phytohormone on the production of berberine in the calli cultures of an endangered medicinal plant, turmeric (Coscinium fenestratum I.), Afr. J. Biotech., 2008, 7, 3244–3246

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Ptak.

About this article

Cite this article

Ptak, A., El Tahchy, A., Skrzypek, E. et al. Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum aestivum callus. cent.eur.j.biol. 8, 591–599 (2013). https://doi.org/10.2478/s11535-013-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0160-y

Keywords

Navigation