Skip to main content
Log in

The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine

  • Mini-Review
  • Published:
Central European Journal of Biology

Abstract

Tissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler D.L., Gostein S.A., Guilak, F., Functional Tissue Engineering: The Role of Biomechanics, J. Biomed. Eng., 2000, 122, 570–575

    CAS  Google Scholar 

  2. Roche R., Hoareau L., Mounet F., Festy F., Adult Stem Cells for Cardiovascular Diseases: The Adipose Tissue Potential, Expert. Opin. Biol. Th., 2007, 7, 1–8

    Article  Google Scholar 

  3. Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural Differentiation of Human Adipose Tissue-Derived Stem Cells using bFGF and Forskolin, BMC Cell Biol., 2010, 11, 25, DOI:10.1186/1471-2121-11-25

    Article  PubMed  Google Scholar 

  4. Lin F., Josephs S.T., Alexandrescu D.T., Ramos F., Bogin V., Gammill V., et al., Lasers, Stem Cells, and COPD, J. Translat. Med., 2010, 8, 16, DOI:10.1186/1479-5876-8-16

    Article  Google Scholar 

  5. Mvula B., Mathope T., Moore T.J., Abrahamse H., The Effects of Low Level Laser Irradiation on Human Adipose Derived Stem Cells, Laser Med. Sci., 2008, 23, 277–282

    Article  CAS  Google Scholar 

  6. Fraser J.K., Wulur I., Alfonso Z., Hedrick M., Fat Tissue: An Underappreciated Source of Stem cells for Biotechnology, Trends Biotech., 2006, 24, 150–115

    Article  CAS  Google Scholar 

  7. Huh C.H., Kim S.Y., Cho H.J., Kim D.S., Lee W.H., Kwon S.B., et al., Effects of Mesenchymal Stem Cells in the Reconstruction of Skin Equivalents, J. Dermalog. Sci., 2000, 46, 217–220

    Article  Google Scholar 

  8. de Villiers J.A., Houreld N.N., Abrahamse H., Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells over 72hrs and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid, Stem Cell Rev. Rep., 2011, 7, 869–882

    Article  CAS  Google Scholar 

  9. Spradling A., Drummond-Barbosa D., Kai T., Stem Cells find their Niche, Nature, 414, 98–104

  10. Reya T., Morrison S., Clarke M.F., Weissman I., Stem Cells, Cancer, Cancer Stem Cells, Nature, 2001, 414, 105–111

    Article  PubMed  CAS  Google Scholar 

  11. Ballas C.B., Zielske S.P., Gerson S.L., Adult Bone Marrow Stem Cells for Cell and Gene Therapies: Implications for greater use, J. Cell Biochem. Sup., 2002, 38, 20–28

    Article  Google Scholar 

  12. Ramsay M.A.E., Will Stem Cells Transform Medicine, Proc. Bayl. Univ. Med. Cent., 2002, 15, 135–137

    PubMed  Google Scholar 

  13. Conrad C., Huss R., Adult Stem Cells Lines in Regenerative Medicine and Reconstructive Surgery, J. Surg. Res., 2005, 124, 201–208

    Article  PubMed  Google Scholar 

  14. Pelled G.G.T., Aslan H., Gazit Z., Gazit D., Mesenchymal Stem Cells for Bone Gene Therapy and Tissue Engineering, Curr. Pharma. Design, 2002, 8, 1917–1928

    Article  CAS  Google Scholar 

  15. Habib N.A., Levicar N., Jiao L., Black G.T., Stem Cell Repair and Regeneration, Imperial College Press, World Scientific Publishing, 2005

  16. Minguell J.J., Erices A., Conget P., Mesenchymal Stem Cells, Exper. Biol. Med., 2001, 226, 507–520

    CAS  Google Scholar 

  17. Suh H., Tissue Restoration, Tissue Engineering and Regenerative Medicine, Yonsei Med. J., 2000, 41, 681–684

    PubMed  CAS  Google Scholar 

  18. Kaji E.H., Leiden J.M., Gene and Stem Cell Therapies, J. Amer. Med. Ass., 2001, 285, 545–550

    Article  CAS  Google Scholar 

  19. Perry D., Patients’ Voices: The Powerful Sound in the Stem Cell Debate, Science, 2000, 287, 1423

    Article  PubMed  CAS  Google Scholar 

  20. Young F.E., A Time for Restraint, Science, 2007, 287, 1424

    Article  Google Scholar 

  21. Gamillion C.T., Burg K.J.L., Stem Cells and Adipose Tissue Engineering, Biomat., 2006, 27, 6052–6063

    Article  Google Scholar 

  22. Peroni D., Scambi I., Pasini A., Lisi V., Bifari F., Krampera M., et al., Stem Molecular Signature of Adipose-Derived Stromal Cells, Exper. Cell Res., 2008, 314, 603–615

    Article  CAS  Google Scholar 

  23. Strem B.M., Hedrick M.H., The growing Importance of Fat in Regenerative Medicine, Trends Biotech., 2005, 23, 64–66

    Article  CAS  Google Scholar 

  24. Strem B.M., Hicok K.C., Zhu M., Wulur I., Alfonso Z., Schreiber R.E., Multipotential Differentiation of Adipose Tissue-Derived Stem Cells, Keio J. Med., 2005, 54, 132–141

    Article  PubMed  CAS  Google Scholar 

  25. Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228

    Article  PubMed  CAS  Google Scholar 

  26. Van Dijk A., Niessen H.W.M., Zandieh Doulabi B., Visser F. C., van Milligen F.J., Differentiation of Human Adipose-Derived Stem Cells towards Cardiomyocytes is Facilitated by Laminin, Cell Tissue Res., 2008, 334, 457–467

    Article  PubMed  Google Scholar 

  27. Rodriguez L.V., Alfonso Z., Zhang R., Leung J., Wu B., Ignarro L.J., Clonogenic Multipotent Stem Cells in Human Adipose Tissue Differentiate into Functional Smooth Muscle Cells, Proc. Nat. Acad. Sci., 2006, 103, 12167–12172

    Article  PubMed  CAS  Google Scholar 

  28. Mvula B., Moore T., Abrahamse H., Effects of Low-Level Laser Irradiation and Epidermal Growth Factor on Adult Human Adipose-Derived Stem Cells, Laser Med. Sci. 2010, 25, 33–39

    Article  CAS  Google Scholar 

  29. Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural differentiation of Human AdiposeTissue-Derived Stem Cells using bFGF and Forskolin, Cell Biol., 2010, 11, 25

    Google Scholar 

  30. Vet-Stem Regenerative Veterinary Medicine, 2008, http://www.marketwire.com/pressrelease/vet-stem-announces-milestone-of8000-animals-treated-with-vet-stem-cell-therapy-1611912.htm

  31. Riordan N.H., Ichim T.E., Min W.P., Wang H., Solano H., Lara F., et al., Non-Expanded Adipose Stromal Vascular Fraction Cell Therapy for Multiple Sclerosis, J. Translat. Med., 2009, 7, 29, DOI: 10.1186/1479-5876-7-29

    Article  Google Scholar 

  32. Tholpady S.S., Llull R., Ogle R.C., Rubin J.P., Futrell J. W., Katz A.J., Adipose Tissue: Stem Cells and Beyond, Clin. Plastic Surg., 2006, 33, 55–62

    Article  Google Scholar 

  33. Giorgino F., Laviola L., Eriksson J.W., Regional Differences of Insulin Action in Adipose Tissue: Insights from in vivo and in vitro Studies, Acta Physiol. Scandanavica, 2005, 185, 13–30

    Article  Google Scholar 

  34. Sinha S., Wamhoff B.R., Hoofnagle M.H., Thomas J., Neppi, R.L., Deering T., Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells, Stem Cells, 2006, 24, 1678–1688

    Article  PubMed  Google Scholar 

  35. Yang Y., Relan N K., Przywara D.A., Schugar L., Embryonic Mesenchymal Cell Share the Potential for Smooth Muscle Differentiation: Myogenesis is Controlled by the Cell, shape, Development, 1999, 126, 3027–3033

    PubMed  CAS  Google Scholar 

  36. Narita Y., Yamawaki A., Kagami H., Ueda M., Ueda Y., Effects of Transforming Growth Factor-Beta1 and Ascorbic Acid on Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage, Cell Tissue Res., 2008, 333, 449–459

    Article  PubMed  CAS  Google Scholar 

  37. Mvula B., Abrahamse H., Adipose Derived Stem cells and Low Intensity Laser Irradiation: Potential Use in Regenerative Medicine, Proc. South Afric. Inst. Phys., 2011, 707–710

  38. Abrahamse H., The Use of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation and Differentiation for Use in Autologous Grafts, Amer. Inst. Phys., 2009, 1172, 95–100

    CAS  Google Scholar 

  39. Renno A.C.M, McDonnell P.A, Parizotto P.A., Laakso E.L., The Effects of Laser Irradiation on Osteobast and Osteosarcoma Cell Prolifertion and Differentiation in Vitro, Photomed. Laser Surg., 2007, 25, 275–280

    Article  PubMed  CAS  Google Scholar 

  40. Gimble J.M., Katz A.J., Bunnell B.A., Adipose-Derived Stem Cells for Regenerative Medicine, Circ. Res., 2007, 100, 1249–1260

    Article  PubMed  CAS  Google Scholar 

  41. Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., et al., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228

    Article  PubMed  CAS  Google Scholar 

  42. Kim J.M., Lee S., Chu K., Jung K., Song E., Kim S., Systemic Transplantation of Human Adipose Stem cells attenuated Cerebral Inflammation and Degeneration in a Hemorrhagic Stroke Model, Brain Res., 2007, 1183, 43–50

    Article  PubMed  CAS  Google Scholar 

  43. Garcia-Olmo D., Garcia-Arranz M., Herrers D., Expanded Adipose-Derived Stem Cells for the Treatment of Complex Perianal Fistula including Crohn,s Disease, Expert Opin. Biol. Th., 2008, 8, 417–1423

    Article  Google Scholar 

  44. Kachgal S., Putnam A.J., Mesenchymal Stem Cells from Adipose and Bone Marrow promote Angiogenesis via Disctinct Cytokine and Protease Expression Mechanisms, Angiogenesis, 2011, 14, 47–59

    Article  PubMed  CAS  Google Scholar 

  45. Spees J.L., Olson S.D., Whitney M.J. Prockop D.J., Mitochondrial Transfer between Cells can Rescue Aerobic Respiration, Proc.Nat. Acad. Sci., USA, 2006, 103, 1283–1288

    Article  CAS  Google Scholar 

  46. Kalbermatten D.F., Shaakxs D., Kingham P.J., Wiberg, M., Neurotrophic Activity of Human Adipose Stem Cells Isolated from Deep and Superficial Layers of Abdominal Fat, Cell Tissue Res., 2011, 344, 251–260

    Article  PubMed  CAS  Google Scholar 

  47. Ogawa S., Miyagawa S., Potentials of Regenerative Medicine for Liver Disease, Surg. Today, 2009, 39, 1019–1025

    Article  PubMed  Google Scholar 

  48. Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D.A., Benvenisty N., Effects of Eight Growth Factors on the Differentiation of Cells Derived from Human Embryonic Stem Cells, Proc. Nat. Acad. Sci., 2000, 97, 11307–11312

    Article  PubMed  CAS  Google Scholar 

  49. Shapiro A.M., Ricordi C., Hering B.J., Auchinclos H., Lindblad R., Robertson R.P., et al., International Trial of the Edmonton Protocol for Islet Transplantation, New Eng. J. Med., 2006, 355, 1318–1330

    Article  PubMed  CAS  Google Scholar 

  50. Couri C.E., Oliveira M.C., Stracieri A.B., Moraes D.A., Pieroni F., Barros G.M., et al., C-peptide Levels and Insulin Independence following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetic Mellitus, J. Amer. Med. Assoc., 2009, 301, 1573–1579

    Article  CAS  Google Scholar 

  51. Abrahamse H., Houreld N.N., Muller S., Ndhlovu L., Fluence and Wavelength of Low Intensity Laser Irradiation Affect Activity and Proliferation of Human Adipose Derived Stem Cells, Med. Tech. SA, 2010, 24, 9–14

    Google Scholar 

  52. Harris L.J., Abdollahi H., Zhang P., Mcllhenny S., Tulenko T.N., DiMuzio P.J., Differentiation of Adult Stem Cells into Smooth Muscle Cells for Vascular Tissue Engineering, J. Surg. Res., 2011, 168, 306–314

    Article  PubMed  CAS  Google Scholar 

  53. Nakagami H., Maeda K., Morishita R., Iguchi S., Nishikawa T., Takami Y., et al., Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue-Derived Stromal Cells, Arteriosclerosis Thrombosis Vasc. Biol., 2005, 25, 2542–2547

    Article  CAS  Google Scholar 

  54. Shoji T., Li M., Mifune Y., Matsumoto T., Kawamoto A., Kwon S., et al., Local Transplantation of Human Multipotent Adipose-Derived Stem Cells Accelerates Fracture Healing via Enhanced Osteogenesis and Angiogenesis, Lab. Investig., 2010, 90, 637–649

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Abrahamse.

About this article

Cite this article

Mvula, B., Abrahamse, H. The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine. cent.eur.j.biol. 8, 331–336 (2013). https://doi.org/10.2478/s11535-013-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0145-x

Keywords

Navigation