Skip to main content
Log in

Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Early chemical-induced stress in Solanum tuberosum leaves was visualized using delayed fluorescence (DF) imaging. The ability to detect spatially heterogeneous responses of plant leaves exposed to several toxicants using delayed fluorescence was compared to prompt fluorescence (PF) imaging and the standard maximum fluorescence yield of PSII measurements (Fv/Fm). The toxicants used in the study were two photosynthesis inhibitors (herbicides), 100 µM methyl viologen (MV) and 140 µM diuron (DCMU), and two heavy metals, 100 µM cadmium and 100 µM copper. The exposure times were 5 and 72 h. Significant photosynthesis-inhibitor effects were already visualized after 5 h. In addition, a significant reduction in the DF/PF index was measured in DCMU- and MV-treated leaves after 5 h. In contrast, only DCMU-treated leaves exhibited a significant decrease in Fv/Fm after 5 h. All treatments resulted in a significant decrease in the DF/PF parameter after 72 h of exposure, when only MV and Cd treatment resulted in visible symptoms. Our study highlights the power of delayed fluorescence imaging. Abundant quantifiable spatial information was obtained with the instrumental setup. Delayed fluorescence imaging has been confirmed as a very responsive and useful technique for detecting stress induced by photosynthesis inhibitors or heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron

DF:

delayed fluorescence

DMSO:

dimethyl sulfoxide

EMCCD:

electron-multiplying charge-coupled device

F0 :

minimal fluorescence from dark-adapted leaf

Fm:

maximum fluorescence from dark-adapted leaf

Fv:

variable fluorescence measured in darkadapted plant, Fv=Fm−F0

Fv / Fm:

maximum fluorescence yield of PSII, Fv/Fm=(Fm-F0)/Fm

LED:

light-emitting diode

MV:

1,1′-Dimethyl-4,4′-bipyridinium dichloride, methyl viologen (syn. paraquat)

PAM:

pulse amplitude modulation

PAR:

photosynthetically active radiation

PF:

prompt fluorescence

References

  1. Nedbal L., Whitmarsh J., Chlorophyll fluorescence imaging in leaves and fruits, In: Papageorgiou G.C., Govinjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis, Springer, Dordrecht, 2004

    Google Scholar 

  2. Chaerle L., Van Der Straeten D., Seeing is believing: imaging techniques to monitor plant health, Biochim Biophys Acta, 2001, 1519, 153–166

    PubMed  CAS  Google Scholar 

  3. Baker N.R., Rosenqvist E., Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J Exp Bot., 2004, 55, 1607–1621

    Article  PubMed  CAS  Google Scholar 

  4. Oxborough K., Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance, J Exp Bot, 2004, 55, 1195–1205

    Article  PubMed  CAS  Google Scholar 

  5. Bennoun P., Beal D., Screening algal mutant colonies with altered thylakoid electrochemical gradient through fluorescence and delayed luminescence digital imaging, Photosynth Res, 1997, 51, 161–165

    Article  CAS  Google Scholar 

  6. Flor-Henry M., McCabe T.C., de Bruxelles G.L., Roberts M.R., Use of a highly sensitive twodimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves, BMC Plant Biol, 2004, 4, 19

    Article  PubMed  Google Scholar 

  7. Björn L.O., Forsberg A.S., Imaging by Delayed Light Emission (Phytoluminography) as a Method for Detecting Damage to the Photosynthetic System, Physiol Plant, 1979, 47, 215–222

    Article  Google Scholar 

  8. Ellenson J.L., Amundson R.G., Delayed light imaging for the early detection of plant stress, Science, 1982, 215, 1104–1106

    Article  PubMed  CAS  Google Scholar 

  9. Strehler B.L., Arnold W., Light production by green plants, J Gen Physiol, 1951, 34, 809–820

    Article  PubMed  CAS  Google Scholar 

  10. Joliot P., Joliot A., Bouges B., Barbieri G., Studies of system-II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission, Photochem Photobiol, 1971, 14, 287–305

    Article  CAS  Google Scholar 

  11. Rutherford A.W., Inoue Y., Oscillation of delayed luminescence from PSII recombination of S2QB- and S3QB-, FEBS Lett, 1984, 165, 163–170

    Article  CAS  Google Scholar 

  12. Joliot P., Joliot A., Dependence of delayed luminescence upon adenosine triphosphatase activity in Chlorella, Plant Physiol, 1980, 65, 691–696

    Article  PubMed  CAS  Google Scholar 

  13. Drinovec L., Drobne D., Jerman I., Zrimec A., Delayed fluorescence of Lemna minor: a biomarker of the effects of copper, cadmium, and zinc, Bull Environ Contam Toxicol, 2004, 72, 896–902

    Article  PubMed  CAS  Google Scholar 

  14. Katsumata M., Koike T., Nishikawa M., Kazumura K., Tsuchiya H., Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata, Water Res, 2006, 40, 3393–3400

    Article  PubMed  CAS  Google Scholar 

  15. Berden-Zrimec M., Drinovec L., Zrimec A., Tisler T., Delayed fluorescence in algal growth inhibition tests, Cent. Eur. J. Biol., 2007, 2, 169–181

    Article  CAS  Google Scholar 

  16. Wang C., Xing D., Chen Q., A novel method for measuring photosynthesis using delayed fluorescence of chloroplast, Biosens Bioelectron, 2004, 20, 454–459

    Article  PubMed  CAS  Google Scholar 

  17. Zrimec A., Drinovec L., Berden-Zrimec M., Influence of chemical and physical factors on long-term delayed fluorescence in Dunaliella tertiolecta, Electromagn Biol Med, 2005, 24, 309–318

    Article  CAS  Google Scholar 

  18. Berden-Zrimec M., Drinovec L., Molinari I., Zrimec A., Fonda S., Monti M., Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta, J Photochem Photobiol B-Biol, 2008, 92, 13–18

    Article  CAS  Google Scholar 

  19. Schneckenburger H., Schmidt W., Time-resolved chlorophyll fluorescence of spruce needles after different light exposure, J Plant Physiol, 1996, 148, 593–598

    Article  CAS  Google Scholar 

  20. Avron M., Schreiber U., Properties of ATP induced chlorophyll luminescence in chloroplasts. Biochim Biophys Acta, 1979, 3 448–454

    Google Scholar 

  21. Tyystjärvi E., Vass I., Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: Relation of prompt fluorescence to delayed light emission and thermoluminescence, In: Papageorgiou G.C., Govinjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis, Springer, Dordrecht, 2004

    Google Scholar 

  22. Krause G.H., Weis E., Chlorophyll fluorescence and photosynthesis: the basics, Annu Rev Plant Physiol Plant Mol Biol, 1991, 42, 313–349

    Article  CAS  Google Scholar 

  23. Samuilov V.D., Lagunova E.M., Dzyubinskaya E.V., Izyumov D.S., Kiselevsky D.B., Makarova Y.V., Involvement of chloroplasts in the programmed death of plant cells, Biochemistry (Moscow), 2002, 67, 627–634

    Article  CAS  Google Scholar 

  24. Teisseire H., Couderchet M., Vernet G., Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor), Environ Pollut, 1999, 106, 39–45

    Article  PubMed  CAS  Google Scholar 

  25. Vavilin D.V., Polynov V.A., Matorin D.N., Venediktov P.S., Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa, J Plant Physiol, 1995, 146, 609–614

    Article  CAS  Google Scholar 

  26. Ouzounidou G., The use of photoacoustic spectroscopy in assessing leaf photosynthesis under copper stress: correlation of energy storage to photosytem II fluorescence parameters and redox change of P700, Plant Sci., 1996, 113, 229–237

    Article  CAS  Google Scholar 

  27. Briat J.-F., Metalion-activated oxidative stress and its control, In: Inze M., Van Montagu M. (Eds.), Oxidative stress in plants, Taylor & Francis, NewYork, 2002

    Google Scholar 

  28. Krupa Z., Cadmium against higher plant photosynthesis: a variety of effects and where do they possibly come from?, Z Naturforsch, 1999, 54, 723–729

    CAS  Google Scholar 

  29. Ciscato M., Vangronsveld J., Valcke R., Effects of heavy metals on the fast chlorophyll fluorescence induction kinetics of photosystem II: a comparative study, Z Naturforsch, 1999, 54, 735–739

    CAS  Google Scholar 

  30. Houot L., Floutier M., Marteyn B., Michaut M., Picciocchi A., Legrain P., et al., Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC6803, under the control of the Slr1738 regulator, BMC Genomics, 2007, 8, 350

    Article  PubMed  Google Scholar 

  31. Gomes-Junior R.A., Moldes C.A., Delite F.S., Pompeu G.B., Gratão P.L., Mazzafera P., et al., Antioxidant metabolism of coffee cell suspension cultures in response to cadmium, Chemosphere, 2006, 65, 1330–1337

    Article  PubMed  CAS  Google Scholar 

  32. Kovac M., Ravnikar M., Sucrose and jasmonic acid interact in photosynthetic pigment metabolism and development of potato (Solanum tuberosum L. cv. Sante) grown in vitro, Plant Growth Regul, 1998, 24, 101–107

    Article  CAS  Google Scholar 

  33. ISO, Water quality — Determination of the toxic effect of water constituents and wastewater to duckweed (Lemnaminor) — Duckweed growth inhibition test, In: International Organization for Standardization, International Standard ISO, 20079

  34. Roháček K., Barták M., Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications, Photosynthetica, 1999, 37, 339–363

    Article  Google Scholar 

  35. Bouvier F., Backhaus R.A., Camara B., Induction and control of chromoplast-specific carotenoid genes by oxidative stress, J Biol Chem, 1998, 273, 30651–3065

    Article  PubMed  CAS  Google Scholar 

  36. Jursinic P.A., Delayed fluorescence: current concepts and status, In: Govindjee, Amesz J., Fork D.C. (Eds.), Light emission by plants and bacteria, Academic Press, Orlando, 1986

    Google Scholar 

  37. Nedbal L., Soukupová J., Kaftan D., Whitmarsh J., Trtílek M., Kinetic imaging of chlorophyll fluorescence using modulated light, Photosynth Res, 2000, 66, 3–12

    Article  PubMed  CAS  Google Scholar 

  38. Matous K., Benediktyova Z., Berger S., Roitsch T., Nedbal L., Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae?, Photosynth Res, 2006, 90, 243–253

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L., Xing D., Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts, Photochem Photobiol Sci, 2008, 7, 352–360

    Article  PubMed  CAS  Google Scholar 

  40. Gould P.D., Diaz P., Hogben C., Kusakina J., Salem R., Hartwell J., Hall A., Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants, Plant J, 2009, 58, 893–901

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaka Razinger.

About this article

Cite this article

Razinger, J., Drinovec, L. & Berden-Zrimec, M. Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato. cent.eur.j.biol. 7, 531–541 (2012). https://doi.org/10.2478/s11535-012-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0038-z

Keywords

Navigation