Skip to main content
Log in

The impacts of heavy metals on oxidative stress and growth of spring barley

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Oxidative stress is accepted to play a significant role in stress symptoms, caused by different stressors in a variety of organisms. In this study seedlings of spring barley (Hordeum vulgare L.) were exposed to a wide range of copper, zinc, chromium, nickel, lead and cadmium concentrations in order to determine the relationships between heavy metals-induced oxidative stress and plant growth inhibition. All investigated heavy metals induced an essential increase in lipid peroxidation and a reduction of dry biomass along with an increase in metal concentration in the nutrient solution. A very close and statistically significant exponential relationship between lipid peroxidation and growth inhibition was detected in this study. According to the results of analysis of variance (ANOVA), the intensity of nonspecific oxidative stress is identified as the main factor of barley growth inhibition, explaining 75% of total variance. Almost 10% of growth inhibition is attributed to the specific impact of heavy metals. The most pronounced increase of malondialdehyde content and growth inhibition was observed in Cu and Cd treatments, whereas the lowest changes in observed indicators were detected after exposure to Zn and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schutzendubel A., Polle A., Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 2001, 53, 1351–1365

    Article  Google Scholar 

  2. Sanita di Toppi L., Gabbrielli R., Response to cadmium in higher plants, Environ. Exp. Bot., 1999, 41, 105–130

    Article  Google Scholar 

  3. Seregin I.V., Ivanov V.B., Physiological aspects of cadmium and lead toxic effects on higher plants, Russ. J. Plant Physiol., 2001, 48, 523–544

    Article  CAS  Google Scholar 

  4. Maksymiec W., Signaling responses in plants to heavy metal stress, Acta Physiol Plant., 2007, 29, 177–187

    Article  CAS  Google Scholar 

  5. Bertrand M., Poirier I., Photosynthetic organisms and excess of metals, Photosynthetica., 2005, 43, 345–353

    Article  CAS  Google Scholar 

  6. Gratao P.L., Polle A., Leo P.J., Making the life of heavy metals-stressed plant a little easier, Funct. Plant Biol., 2005, 32, 481–494

    Article  CAS  Google Scholar 

  7. Prasad M.N.V., Heavy metal stress in plants: from biomolecules to ecosystems, 2nd ed. Springer-Verlag, Heidelberg, 2004

    Google Scholar 

  8. Sharma S.S., Dietz K.J., The relationship between metal toxicity and cellular redox imbalance, Trends Plant Sci., 2008, 14, 43–50

    Article  PubMed  Google Scholar 

  9. Benavides M.P., Gallego S.M., Tomaro M.L., Cadmium toxicity in plants, Braz. J. Plant Physiol., 2005, 17, 21–34

    CAS  Google Scholar 

  10. Wu F., Zhang G., Dominy P., Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity, Environ. Exp. Bot., 2003, 50, 67–78

    Article  CAS  Google Scholar 

  11. Shanker A.K., Djanaguiraman M., Sudhagar R., Chandrashekar C.N., Pathmanabhan G., Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots,. Plant Sci., 2004, 166, 1035–1043

    Article  CAS  Google Scholar 

  12. Tamas L., Dudıkova J., Durcekova K., Huttova J., Mistrık I., Zelinova V., The impact of heavy metals on the activity of some enzymes along the barley root, Environ. Exp. Bot., 2008, 62, 86–91

    Article  CAS  Google Scholar 

  13. Radwan M.A., El-Gendy K.S., Gad A.F., Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution, Chemosphere., 2010, 79, 40–46

    Article  PubMed  CAS  Google Scholar 

  14. Inze D., Montagu M.V., Oxidative stress in plants. Taylor & Francis, London and New York, 2002

    Google Scholar 

  15. Apel K., Hirt H., Reactive Oxygen Species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, 55, 373–399

    Article  PubMed  CAS  Google Scholar 

  16. Hock B., Elstner E.F., Plant toxicology, 4th ed. Marcel Dekker, New York, 2005

    Google Scholar 

  17. Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, 7, 405–410

    Article  PubMed  CAS  Google Scholar 

  18. Hegedus A., Erdei S., Horvath G., Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress, Plant Sci., 2001, 160, 1085–1093

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto O.K., Pinto E., Latorre L.R., Bechara E.J.H., Colepicolo P., Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts, Arch. Environ. Contam. Toxicol., 2000, 40, 18–24

    Google Scholar 

  20. Panda S.K., Choudhury S., Chromium stress in plant, Braz. J. Plant Physiol., 2005, 17, 95–102

    CAS  Google Scholar 

  21. Krämer U., Clemens S., Functions and homeostasis of zinc, copper, and nickel in plants, Topics in Current Genetics., 2005, 14, 215–272

    Google Scholar 

  22. Valko M., Morris H., Cronin M.T., Metals, toxicity and oxidative stress, Curr. Med. Chem., 2005, 12, 1161–1208

    Article  PubMed  CAS  Google Scholar 

  23. Radwan M.A., El-Gendy K.S., Gad A.F., Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution, Chemosphere., 2010, 79, 40–46

    Article  PubMed  CAS  Google Scholar 

  24. Buege J.A., Aust S.D., Microsomal lipid peroxidation, Methods Enzymol., 1978, 52, 302–310

    Article  PubMed  CAS  Google Scholar 

  25. Blokhina O., Virolainen E., Fagerstedt V., Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot., 2003, 91, 179–194

    Article  PubMed  CAS  Google Scholar 

  26. Verma S., Dubey R.S., Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants, Plant Sci., 2003, 164, 645–655

    Article  CAS  Google Scholar 

  27. Oerke E.C., Dehne H.E., Safeguarding production — losses in major crops and the role of crop protection, Crop Prot., 2004, 23, 275–285

    Article  Google Scholar 

  28. Rajcakova L., Gaito M., Mlynar R., Transport of Cu, Zn, Pb and Cd by spring barley cultivation on contaminated soils, Agriculture, 2006, 52, 38–44

    CAS  Google Scholar 

  29. Juknys R., Račaitė M., Vitkauskaitė G., Venclovienė J., The effect of heavy metals on spring barley (Hordeum vulgare L.), Agriculture., 2009, 96, 111–124

    Google Scholar 

  30. Dėdelienė K., Juknys R., Response of several spring barley cultivars to UV-B radiation and ozone treatment, EREM, 2010, 54, 13–19

    Google Scholar 

  31. Juknys R., Račaitė M., Vitkauskaitė G., Crossadaptation of spring barley (Hordeum vulgare L.) to environmental stress induced by heavy metals, Ekologija, 2010, 56, 1–9

    Article  CAS  Google Scholar 

  32. Rout G.R., Das P., Effect of metal toxicity on plant growth and metabolism: I., Zinc. Agronomie., 2003, 23, 3–11

    Google Scholar 

  33. Aniol A., Genetics of tolerance to aluminum in wheat (Triticum aestivum L.Thell.), Plant Soil., 1990, 123, 223–227

    Article  CAS  Google Scholar 

  34. Ramaškevičienė A., Kupčinskienė E., Sliesaravičius A., BlaŽytė A., Physiological responses of Lithuanian cultivars of Hordeum sativum ssp. distichum L. to Al exposure, Biologija., 2001, 2, 47–49

    Google Scholar 

  35. Pierce Ch.A., Block R.A., Aguinis H., Cautionary note on reporting eta-squared values from multifactor ANOVA designs, Educ. Psychol. Meas., 2004, 64, 916–924

    Article  Google Scholar 

  36. Aravind P., Prasad M.N.V., Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology, Braz. J. Plant Physiol., 2005, 17, 3–20

    Article  CAS  Google Scholar 

  37. Ke W., Xiong Z., Xie M., Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations, Plant Soil., 2007, 292, 291–304

    Article  CAS  Google Scholar 

  38. Dey S., Dey J., Patra S., Pothal D., Changes in antiooxidative enzyme activities and lipide peroxidation in wheat seedlings exposed to cadmium and lead stress, Braz. J. Plant Physiol., 2007, 19, 53–60

    Article  CAS  Google Scholar 

  39. Stohs S.J., Bagchi D., Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med., 1994, 18, 321–336

    Article  Google Scholar 

  40. Mazhoudi S., Chaoui A., Ghorbal M.H., Ferjani E., Response of oxidant enzymes to excess copper in tomato (Lycopersicon Eculentum, M.), Plant Sci., 1997, 127, 129–137

    Article  CAS  Google Scholar 

  41. Athar R., Achmad M., Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azobacter, Water Air Soil Pollut., 2002, 18, 165–180

    Article  Google Scholar 

  42. Ivanov V.B., Bystrova E.I., Seregin I.V., Comparative impacts of heavy metals on root growth as related to their specificity and selectivity, Russ. J. Plant Physiol., 2003, 50 398–406

    Article  CAS  Google Scholar 

  43. Cuypers A., Vangronsveld J., Clijsters H., The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris, Plant Physiol. Biochem., 2001, 39, 657–664

    Article  CAS  Google Scholar 

  44. Lanaras T., Moustakas M., Symeonidis L., Diamantoglou S., Karaaglis S. Plant metal content, growth responses and some photosynthetic measurements on field-cultivated wheat growing on ore bodies enriched in Cu, Physiol. Plant., 1993, 88, 307–314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giedrė Vitkauskaitė.

About this article

Cite this article

Juknys, R., Vitkauskaitė, G., Račaitė, M. et al. The impacts of heavy metals on oxidative stress and growth of spring barley. cent.eur.j.biol. 7, 299–306 (2012). https://doi.org/10.2478/s11535-012-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0012-9

Keywords

Navigation