Skip to main content
Log in

Preload-induced changes in isometric tension and [Ca2+]i in rat myocardium

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

Preload-induced changes of active tension and [Ca2+]i are “dissociated” in mammalian myocardium. This study aimed to describe the distinct effects of preload at low and physiological [Ca2+]o. Rat RV papillary muscles were studied in isometric conditions at 25‡C and 0.33 Hz at 1 mM (hypo-Ca group) and 2.5 mM [Ca2+]o (normal-Ca group). [Ca2+]i was monitored with fura-2/AM. Increase of preload caused a rise of active tension in hypo-Ca and normal-Ca groups whereas peak fluorescence rose significantly only at low [Ca2+]o. End-diastolic tension, end-diastolic level of fluorescence, time-to-peak tension, but not time-to-peak of Ca2+ transient, progressively increased with preload. Mechanical relaxation decelerated with preload while Ca2+ transient decay time decreased in the initial phase and increased in the late phase, resulting in a prominent “bump” configuration. The “bump” was assessed as a ratio of its area to the fluorescence trace area. It was a new finding that the preload-induced rise of this ratio was twice as large in hypo-Ca. Our results indicate that preload-induced changes in active tension and [Ca2+]i are “dissociated” in rat myocardium, with relatively higher expression at low [Ca2+]o. Ca-dependence of Ca-TnC association/dissociation kinetics is thought to be a main contributor to these preload-induced effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmley W.W., Chuck L., Length-dependent changes in myocardial contractile state, Am. J. Physiol., 1973, 224, 1195–1199

    PubMed  CAS  Google Scholar 

  2. Hibberd M.G., Jewell B.R., Calcium- and lengthdependent force production in rat ventricular muscle, J. Physiol., 1982, 329, 527–540

    PubMed  CAS  Google Scholar 

  3. Hofmann P.A., Fuchs F., Bound calcium and force development in skinned cardiac muscle bundles: effect of sarcomere length, J. Mol. Cell. Cardiol., 1988, 20, 667–677

    Article  PubMed  CAS  Google Scholar 

  4. Gordon A.M., Homsher E., Regnier M., Regulation of contraction in striated muscle, Physiol. Rev., 2000, 80, 853–924

    PubMed  CAS  Google Scholar 

  5. McDonald K.S., Moss R.L., Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length, Circ. Res., 1995, 77, 199–205

    PubMed  CAS  Google Scholar 

  6. Gulati J., Sonnenblick E., Babu A., The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles, J. Physiol., 1991, 441, 305–324

    PubMed  CAS  Google Scholar 

  7. Wang Y.P., Fuchs F., Length, force, and Ca(2+)-troponin C affinity in cardiac and slow skeletal muscle, Am. J. Physiol., 1994, 266, C1077–C1082

    PubMed  CAS  Google Scholar 

  8. Allen D.G., Nichols C.G., Smith G.L., The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle, J. Physiol., 1988, 406, 359–370

    PubMed  CAS  Google Scholar 

  9. Ward M.L., Williams I.A., Chu Y., Cooper P.J., Ju Y.K., Allen D.G., Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy, Prog. Biophys. Mol. Biol., 2008, 97, 232–249

    Article  PubMed  CAS  Google Scholar 

  10. Gannier F., White E., Garnier D., Le Guennec J.Y., A possible mechanism for large stretch-induced increase in [Ca2+]i in isolated guinea-pig ventricular myocytes, Cardiovasc. Res., 1996, 32, 158–167

    PubMed  CAS  Google Scholar 

  11. Le Guennec J.Y., White E., Gannier F., Argibay J.A., Garnier D., Stretch-induced increase of resting intracellular calcium concentration in single guineapig ventricular myocytes, Exp. Physiol., 1991, 76, 975–978

    PubMed  Google Scholar 

  12. White E., Le Guennec J.Y., Nigretto J.M., Gannier F., Argibay J.A., Garnier D., The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes, Exp. Physiol., 1993, 78, 65–78

    PubMed  CAS  Google Scholar 

  13. Hongo K., White E., Le Guennec J.Y., Orchard C.H., Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length, J. Physiol., 1996, 491, 609–619

    PubMed  CAS  Google Scholar 

  14. Kondratev D., Gallitelli M.F., Increments in the concentrations of sodium and calcium in cell compartments of stretched mouse ventricular myocytes, Cell Calcium, 2003, 34, 193–203

    Article  PubMed  CAS  Google Scholar 

  15. Steele D.S., Smith G.L., Effects of muscle length on diastolic I[Ca2+]i in isolated guinea-pig ventricular trabeculae. J. Physiol., 1993, 467, 328P

    Google Scholar 

  16. Kentish J.C., Wrzosek A., Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae, J. Physiol., 1998, 506.2, 431–444

    Article  Google Scholar 

  17. Alvarez B.V., Pérez N.G., Ennis I.L., Camilión de Hurtado M.C., Cingolani H.E., Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect, Circ. Res., 1999, 85, 716–722

    PubMed  CAS  Google Scholar 

  18. Allen D.G., Kurihara S., The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle, J. Physiol., 1982, 327, 79–94

    PubMed  CAS  Google Scholar 

  19. Lamberts R.R., Van Rijen M.H., Sipkema P., Fransen P., Sys S.U., Westerhof N., Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms, Am. J. Physiol. Heart. Circ. Physiol., 2002, 283, H1515–H1522

    PubMed  CAS  Google Scholar 

  20. Luers C., Fialka F., Elgner A., Zhu D., Kockskämper J., von Lewinski D., et al., Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium — a mechanism for the slow force response, Cardiovasc. Res., 2005, 68, 454–463

    Article  PubMed  CAS  Google Scholar 

  21. Monasky M.M., Varian K.D., Davis J.P., Janssen P.M., Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium, Pflugers Arch., 2008, 456, 267–276

    Article  PubMed  CAS  Google Scholar 

  22. Komukai K., Kurihara S., Effect of developed tension on the time courses of Ca2+ transients and tension in twitch contraction in ferret myocardium, Cardiovasc. Res., 1996, 32, 384–390

    Article  PubMed  CAS  Google Scholar 

  23. Backx P.H., Ter Keurs H.E., Fluorescent properties of rat cardiac trabeculae microinjected with fura-2 salt, Am. J. Physiol., 1993, 264, H1098–H1110

    PubMed  CAS  Google Scholar 

  24. Pieske B., Schlotthauer K., Schattmann J., Beyersdorf F., Martin J., Just H., et al., Ca(2+)-dependent and Ca(2+)-independent regulation of contractility in isolated human myocardium, Basic Res. Cardiol., 1997, 92, 75–86

    Article  PubMed  CAS  Google Scholar 

  25. Endoh M., Signal transduction and Ca2+ signaling in intact myocardium, J. Pharmacol. Sci., 2006, 100, 525–537

    Article  PubMed  CAS  Google Scholar 

  26. Tavi P., Han C., Weckström M., Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels, Circ. Res., 1998, 83, 1165–1177

    PubMed  CAS  Google Scholar 

  27. Yasuda S., Sugiura S., Yamashita H., Nishimura S., Saeki Y., Momomura S. et al., Unloaded shortening increases peak of Ca2+ transients but accelerates their decay in rat single cardiac myocytes, Am. J. Physiol. Heart. Circ. Physiol., 2003, 285, H470–H475

    PubMed  CAS  Google Scholar 

  28. Jiang Y., Patterson M.F., Morgan D.L., Julian F.J., Basis for late rise in fura 2 R signal reporting [Ca2+]i during relaxation in intact rat ventricular trabeculae, Am. J. Physiol., 1998, 274, C1273–C1282

    PubMed  CAS  Google Scholar 

  29. White E., Boyett M.R., Orchard C.H., The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes, J. Physiol., 1995, 482, 93–107

    PubMed  CAS  Google Scholar 

  30. Allen D.G., Kentish J.C., The cellular basis of the length-tension relation in cardiac muscle, J. Mol. Cell. Cardiol., 1985, 17, 821–840

    Article  PubMed  CAS  Google Scholar 

  31. Hofmann P.A., Fuchs F., Effect of length and crossbridge attachment on Ca2+ binding to cardiac troponin C, Am. J. Physiol., 1987, 253, C90–C96

    PubMed  CAS  Google Scholar 

  32. Todaka K., Ogino K., Gu A., Burkhoff D., Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts, Am. J. Physiol., 1998, 274, H990–H1000

    PubMed  CAS  Google Scholar 

  33. Cazorla O., Pascarel C., Garnier D., Le Guennec J.Y., Resting tension participates in the modulation of active tension in isolated guinea pig ventricular myocytes, J. Mol. Cell. Cardiol., 1997, 29, 1629–1637

    Article  PubMed  CAS  Google Scholar 

  34. Housmans P.R., Lee N.K., Blinks J.R., Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle, Science, 1983, 221, 159–161

    Article  PubMed  CAS  Google Scholar 

  35. Wakayama Y., Miura M., Sugai Y., Kagaya Y., Watanabe J., ter Keurs H.E. et al., Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions, Am. J. Physiol. Heart. Circ. Physiol., 2001, 281, H2133–H2142

    PubMed  CAS  Google Scholar 

  36. Tatsukawa Y., Kiyosue T., Arita M., Mechanical stretch increases intracellular calcium concentration in cultured ventricular cells from neonatal rats, Heart Vessels, 1997, 12, 128–135

    Article  PubMed  CAS  Google Scholar 

  37. Ruwhof C., van Wamel J.T., Noordzij L.A., Aydin S., Harper J.C., van der Laarse A., Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes, Cell Calcium, 2001, 29, 73–83

    Article  PubMed  CAS  Google Scholar 

  38. Backx P.H., Gao W.D., Azan-Backx M.D., Marban E., Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics, J. Physiol., 1994, 476, 487–500

    PubMed  CAS  Google Scholar 

  39. Kondratev D., Christ A., Gallitelli M.F., Inhibition of the Na+-H+ exchanger with cariporide abolishes stretch-induced calcium but not sodium accumulation in mouse ventricular myocytes, Cell Calcium, 2005, 37, 69–80

    Article  PubMed  CAS  Google Scholar 

  40. Kurihara S., Saeki Y., Hongo K., Tanaka E., Sudo N., Effects of length change on intracellular Ca2+ transients in ferret ventricular muscle treated with 2,3-butanedione monoxime (BDM), Jpn. J. Physiol., 1990, 40, 915–920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Lookin.

About this article

Cite this article

Lookin, O., Protsenko, Y. Preload-induced changes in isometric tension and [Ca2+]i in rat myocardium. cent.eur.j.biol. 6, 730–742 (2011). https://doi.org/10.2478/s11535-011-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0052-6

Keywords

Navigation