Skip to main content
Log in

The role of auxins in somatic embryogenesis of Abies alba

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The somatic embryogenesis of conifers is a process susceptible to exogenous phytohormonal treatments. We report the effects of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the auxin inhibitor p-chlorophenoxyisobutyric acid (PCIB) on the endogenous level of the auxin indole-3-acetic acid (IAA) and on the anatomical composition of early somatic embryos of Abies alba (European silver fir). The embryogenic suspensor mass (ESM) of Abies alba proliferated on a medium supplemented by 2,4-D as well as on an auxin-free medium. The endogenous level of IAA was significantly higher in the ESM cultivated on a medium supplemented by 2,4-D. The decrease in the endogenous level of IAA in the first week of maturation is one of the most important stimuli responsible for the subsequent development of embryos. However, suppression of IAA synthesis by an auxin inhibitor did not stimulate the development of embryos. The maturation of somatic embryos from the globular to the cotyledonary stage occurs when the concentration of endogenous auxin in the ESM (including the embryos) increases. Early somatic embryos proliferating on a medium supplemented by auxin had an increased probability of maturing successfully. Exogenous auxin treatment during maturation did not compensate for the auxin deficiency during proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

BAP:

6-benzylaminopurine, N6–benzyladenine

2,4-D:

2,4-dichlorphenoxyacetic acid

ESM:

embryogenic suspensor mass

IAA:

indole-3-acetic acid

kin:

kinetin

PCIB:

p-chlorophenoxyisobutyric acid

PEG:

polyethylene glycol 4000

References

  1. Cooke T.J., Racusen R.H., Cohen J.D., The role of auxin in plant embryogenesis, Plant Cell, 1993, 5,1494–1495

    Article  PubMed  CAS  Google Scholar 

  2. Hamann T., The role of auxin in apical-basal pattern formation during Arabidopsis embryogenesis, J. Plant Growth Regul., 2001, 20, 292–299

    Article  CAS  Google Scholar 

  3. Friml J., Auxin transport — shaping the plant, Curr. Opin. Plant Biol., 2003, 6, 7–12

    Article  PubMed  CAS  Google Scholar 

  4. Liu C.M., Xu Z.H., Chua N.H., Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis, Plant Cell, 1993, 5, 621–630

    Article  PubMed  CAS  Google Scholar 

  5. Friml J., Vieten A., Bauer M., Weijers D., Schwarz H., Haman T., et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, 2003, 426, 147–153

    Article  PubMed  CAS  Google Scholar 

  6. Dodeman V.L., Ducreux G., Kreis M., Zygotic embryogenesis versus somatic embryogenesis, J. Exp. Bot., 1997, 48, 1493–1509

    CAS  Google Scholar 

  7. von Arnold S., Clapham D., Egertsdotter U., Mo L.H., Somatic embryogenesis in conifers — A case study of induction and development of somatic embryos in Picea abies, Plant Growth Regul., 1996, 20, 3–9

    Article  Google Scholar 

  8. von Arnold S., Sabala I., Bozhkov P., Dyachok J., Filonova L., Developmental pathways of somatic embryogenesis, Plant Cell Tiss. Org. Cult., 2002, 69, 233–249

    Article  Google Scholar 

  9. Bozhkov P.V., Filonova L.H., von Arnold S., A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification, Biotechnol. Bioingeneering, 2002, 77, 658–667

    Article  CAS  Google Scholar 

  10. Guevin T.G, Micah V., Kirby E.G., Somatic embryogenesis in cultured mature zygotic embryo of Abies balsamea, Plant Cell Tiss. Org. Cult., 1994, 37, 205–208

    Article  CAS  Google Scholar 

  11. Norgaard J.V., Krogstrup P., Somatic embryogenesis in Abies spp., In: Jain S., Gupta P., Newton R., (Eds.), Somatic Embryogenesis in Woody Plants, vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995

    Google Scholar 

  12. Salajova T., Jasik J., Kormutak A., Salaj J., Hakman I., Embryonic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies numidica), Plant Cell Rep., 1996, 15, 527–530

    CAS  Google Scholar 

  13. Guevin T.G., Kirby E.G., Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri (Pursh) Poir, Plant Cell Tiss. Org. Cult., 1997, 49, 219–222

    Article  CAS  Google Scholar 

  14. Schuller A., Kirchner-Ness R., Reuther G., Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos, Plant Cell Tiss. Org. Cult., 2000, 60, 23–31

    Article  CAS  Google Scholar 

  15. Vookova B., Kormutak A., Hrib J., Effect of myoinositol on somatic embryogenesis of Abies numidica, J. Appl. Bot., 2001, 75, 46–49

    CAS  Google Scholar 

  16. Vookova B., Kormutak A., Some features of somatic embryo maturation of Algerian fir, In Vitro Cell. Dev. Biol. Plant, 2002, 38, 549–551

    Article  CAS  Google Scholar 

  17. Kvaalen H., Daehlen O.G., Rognstad A.T., Gronstad B., Egertsdotter U., Somatic embryogenesis for plant production of Abies lasiocarpa, Can. J. Forest Res., 2005, 35, 1053–1060

    Article  Google Scholar 

  18. Kormutak A., Salaj T., Vookova B., Storage protein dynamics in zygotic and somatic embryos of white fir, Biologia, 2006, 61, 479–486

    Article  CAS  Google Scholar 

  19. Krajnakova J., Gomory D., Haggman H., Somatic embryogenesis in Greek fir, Can. J. Forest Res., 2008, 38, 760–769

    Article  CAS  Google Scholar 

  20. Petrussa E., Bertolini A., Casolo V., Krajnakova J., Macri F., Vianello A., Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba, Planta, 2009, 231, 93–107

    Article  PubMed  CAS  Google Scholar 

  21. Vookova B., Machava J., Salgovicova A., Kormutak A., Optimization of Algerian fir somatic embryos maturation, Biol. Plant., 2010, 54, 177–180

    Article  Google Scholar 

  22. Norgaard J.V., Krogstrup P., Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk., Plant Cell Rep., 1991, 9, 509–513

    CAS  Google Scholar 

  23. Tautorus T. E., Fowke L.C., Dunstan D.I., Somatic embryogenesis in conifers, Can. J. Bot., 1991, 69, 1873–1899

    Article  Google Scholar 

  24. Astarita L.V., Floh E.I.S., Handro W., Changes in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine), Plant Growth Regul., 2003, 39, 113–118

    Article  CAS  Google Scholar 

  25. Schuller A., Reuther G., Response of Abies alba embryonal suspensor-mass to various carbohydrate treatments, Plant Cell Rep., 1993, 12, 199–202

    Article  CAS  Google Scholar 

  26. Murashige T., Skoog F., A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant., 1962, 15, 473–497

    Article  CAS  Google Scholar 

  27. Eder J., Rovenská J., Kutáček M., Čermák V., HPLC analysis of indoles in Agrobacterium and transformed tobacco cells, In: Kutáček M., Bandurski R.S., Krekule J., (Eds.), Physiology and Biochemistry of Auxins in Plants, Academia Praha in co-edition with SPB Academic Publishing, Prague, 1988

    Google Scholar 

  28. von Aderkas P., Lelu M.A., Label P., Plant growth regulator levels during maturation of larch somatic embryos, Plant Physiol. Biochem., 2001, 39, 495–502

    Article  Google Scholar 

  29. Chiwocha S., von Aderkas P., Endogenous levels of free and conjugated forms of auxin, cytokinins and abscisic acid during seed development in Douglas fir, Plant Growth Regul., 2002, 36, 191–200

    Article  CAS  Google Scholar 

  30. Vágner M., Vondráková Z., Strnadová Z., Eder J., Macháčková I., Endogenous levels of plant growth hormones during early stages of somatic embryogenesis of Picea abies, Adv. Hort. Sci., 1998, 12, 11–18

    Google Scholar 

  31. Vágner M., Vondráková Z., Špačková J., Cvikrová M., Eder J., Lipavská H., et al., Norway spruce somatic embryogenesis: endogenous levels of phytohormones during somatic embryo development, In: Altman A., Ziv M., Izhar S., (Eds.), Plant biotechnology and in vitro biology in the 21st century, Kluwer Academic Publishers, Dordrecht, 1999

    Google Scholar 

  32. Sandberg G., Ernstsen A., Hamnede M., Dynamics of indole-3-acetic acid and indole-3-ethanol during development and germination of Pinus sylvestris seeds, Physiol. Plant., 1987, 71, 411–418

    Article  CAS  Google Scholar 

  33. Sandberg G., Ernstsen A., Dynamics of indole-3-acetic acid and indole-3-ethanol during germination of Picea abies seeds, Tree Physiol., 1987, 3, 185–192

    PubMed  CAS  Google Scholar 

  34. Souter M., Lindsey K., Polarity and signalling in plant embryogenesis, J. Exp. Bot., 2000, 51, 971–983

    Article  PubMed  CAS  Google Scholar 

  35. Berleth T., Sachs T., Plant morphogenesis: long-distance coordination and local patterning, Curr. Opinion Plant. Biol., 2001, 4, 57–62

    Article  CAS  Google Scholar 

  36. Reinhardt D., Vascular patterning: More than just auxin?, Curr. Biol., 2003, 13, 485–487

    Article  Google Scholar 

  37. Hakman I., Hallberg H., Palovaara J., The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development, Tree Physiol., 2009, 29, 483–496

    Article  PubMed  CAS  Google Scholar 

  38. Palovaara J., Hallberg H., Stasolla C., Luit B., Hakman I., Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues, Tree Physiol., 2010, 30, 479–489

    Article  PubMed  CAS  Google Scholar 

  39. Larsson E., Sitbon F., Ljung K., von Arnold S., Inhibited polar auxin transport results in aberrant embryo development in Norway spruce, New Phytol., 2008, 177, 356–366

    PubMed  CAS  Google Scholar 

  40. Ramesar-Fortner N.S., Yeung E.C., Tri- iodobenzoic acid affects shoot apical meristem formation and function in zygotic embryos of Brassica napus cv. Topas, Can. J. Bot., 2001, 79, 265–273

    CAS  Google Scholar 

  41. Ramarosandratana A.V., van Staden J., Effects of auxins and 2,3,5-triiodobenzoic acid on somatic embryo initiation from Norway spruce zygotic embryos (Picea abies), Plant Cell Tiss. Org. Cult., 2004, 79, 105–107

    Article  CAS  Google Scholar 

  42. Reinhardt D., Mandel T., Kuhlermeier C., Auxin regulates the initiation and radial position of plant lateral organs, Plant Cell, 2000, 12, 507–518

    Article  PubMed  CAS  Google Scholar 

  43. Hristoforoglu K., Schmidt J., Bolhar-Nordenkampf H., Development and germination of Abies alba somatic embryos, Plant Cell Tiss. Org. Cult., 1995, 40, 277–284

    Article  Google Scholar 

  44. Liao Y.K., Liao C.-K., Ho Y.L., Maturation of somatic embryos in two embryonic cultures of Picea morrisonicola Hayata as affected by alternation of endogenous IAA content, Plant Cell Tiss. Org. Cult. 2008, 93, 257–268

    Article  CAS  Google Scholar 

  45. Oono Y., Ooura C., Rahman A., Aspuria E.T., Hayashi K., Tanaka A., et al., p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root, Plant Physiol., 2003, 133, 1135–1147

    Article  PubMed  CAS  Google Scholar 

  46. Find J., Grace L., Krogstrup P., Effect of antiauxins on maturation of embryonic tissue cultures of Nordmanns fir (Abies nordmanniana), Physiol. Plant., 2002, 116, 231–237

    Article  PubMed  CAS  Google Scholar 

  47. Stasolla C., Yeung E.C., Recent advances in conifer somatic embryogenesis: improving somatic embryo quality, Plant Cell Tiss. Org. Cult., 2003, 74, 15–35

    Article  CAS  Google Scholar 

  48. Hocher V., Sotta B., Maldiney R., Bonnet M., Miginiac E., Change in indole-3-acetic acid levels during tomato (Lycopersicon-esculentum MILL) seed development, Plant Cell Rep., 1992, 11, 253–256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Vondráková.

About this article

Cite this article

Vondráková, Z., Eliášová, K., Fischerová, L. et al. The role of auxins in somatic embryogenesis of Abies alba . cent.eur.j.biol. 6, 587–596 (2011). https://doi.org/10.2478/s11535-011-0035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0035-7

Keywords

Navigation