Skip to main content
Log in

Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Currently most of the applications of silver nanoparticles are in antibacterial/antifungal agents in medicine and biotechnology, textile engineering, water treatment and silver-based consumer products. However, the effects of silver nanoparticles on human body, especially on the central nervous system, are still unclear. To study the mechanisms underlying the effects of silverpoly(amidehydroxyurethane) coated silver nanoparticles on brain functions, we subjected male Wistar rats to chronic treatments with silver-29 nm (5 µg/kg and 10 µg/kg) and silver-23 nm (5 µg/kg and 10 µg/kg) nanoparticles for 7 days. We evaluated the effects of nanoparticles size and structure on rat memory function. Memory processes were studied by means of two cognitive tasks (Y-maze and radial arm-maze). Exposure to silver nanoparticles significantly decreased spontaneous alternation in the Y-maze task and working memory functions in the radial arm-maze task, suggesting that nanoparticles have effects on short-term memory. We found no effects on long-term memory, which we assessed by reference memory trials in the radial arm-maze task. We found that memory deficits were significantly correlated with oxidative stress generation only in the Y-maze task. Our findings suggest that silver nanoparticles may induce an impairment of memory functions by increasing oxidative stress in the brain. The use of silver nanoparticles for medical purposes therefore requires careful consideration, particularlyif it involves exposure of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toshima N., Nanoscale Materials, In: M. Liz-Marzan L., Kamat P.V., (Eds.), Kluwer Academic Pub., London, 2003, 79–96

    Google Scholar 

  2. Nam J.M., Thaxton C.S., Mirkin C.A., Nanoparticlebased bio-bar codes for the ultrasensitive detection of proteins, Science, 2003, 301, 1884–1886

    Article  PubMed  CAS  Google Scholar 

  3. Tkachenko A.G., Xie H., Coleman D., Glomm W., Ryan J., Anderson M.F., et al., Multifunctional gold nanoparticle peptide complexes for nuclear targeting, J. Am. Chem. Soc., 2003, 125, 4700–4701

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., et al., Nanoshellmediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 2003, 100, 13549–13554

    Article  PubMed  CAS  Google Scholar 

  5. Burda C., Chen X., Narayanan R., El-Sayed M.A., Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105, 1025–1102

    Article  PubMed  CAS  Google Scholar 

  6. Gupta A., Silver S., Silver as biocide:Will resistance become a problem?, Nat. Biotechnol., 1998, 16, 888

    Article  PubMed  CAS  Google Scholar 

  7. Ji J.H., Jung J.H., Kim S.S., Yoon J.U., Park J.D., Choi B.S., et al., Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats, Inhal. Toxicol., 2007, 19, 857–871

    Article  PubMed  CAS  Google Scholar 

  8. Lockman P.R., Koziara J.M., Mumper R.J., Allen D.D., Nanoparticle surface charges alter blood-brain barrier integrity and permeability, J. Drug. Target., 2004, 12, 635–641

    Article  PubMed  CAS  Google Scholar 

  9. Kreyling W.G., Semmler M., Erbe F., Mayer P., Takenaka S., Schulz H., et al., Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low, J. Toxicol. Environ. Health Part A, 2002, 65, 1513–1530

    Article  PubMed  CAS  Google Scholar 

  10. Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., et al., Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol., 2004, 16, 437–445

    Article  PubMed  CAS  Google Scholar 

  11. Ma L., Liu J., Li N., Wang J., Duan Y., Yan J., et al., Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity, Biomaterials, 2010, 31, 99–105

    Article  PubMed  CAS  Google Scholar 

  12. Hu R., Gong X., Duan Y., Li N., Che Y., Cui Y., et al., Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles, Biomaterials, 2010, 31, 8043–8050

    Article  PubMed  CAS  Google Scholar 

  13. Sharma H.S., Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection, Nanomedicine, 2007, 2, 753–758

    Article  PubMed  CAS  Google Scholar 

  14. Sharma H.S., Sharma A., Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology, Prog. Brain Res., 2007, 162, 245–273

    Article  PubMed  CAS  Google Scholar 

  15. Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats, Inhal. Toxicol., 2008, 20, 575–583

    Article  PubMed  CAS  Google Scholar 

  16. Liu Z., Ren G., Zhang T., Yang Z., Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles, Toxicology, 2009, 264, 179–184

    Article  PubMed  CAS  Google Scholar 

  17. Cha K., Hong H.W., Choi Y.G., Lee M.J., Park J.H., Chae H.K., et al., Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles, Biotechnol. Lett., 2008, 30, 1893–1899

    Article  PubMed  CAS  Google Scholar 

  18. Shin S.H., Ye M.K., Kim H.S., Kang H.S., The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells, Int. Immunopharmacol., 2007, 7, 1813–1818

    Article  PubMed  CAS  Google Scholar 

  19. Tang M., Xing T., Zeng J., Wang H., Li C., Yin S., et al., Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons, Environ. Health Perspect., 2008, 116, 915–922

    Article  PubMed  CAS  Google Scholar 

  20. Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion, Toxicol. Sci., 2006, 92, 456–463

    Article  PubMed  CAS  Google Scholar 

  21. Cui K., Luo X., Xu K., Ven Murthy M.R., Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2004, 28, 771–799

    Article  CAS  Google Scholar 

  22. Curtin J.F., Donovan M., Cotter T.G., Regulation and measurement of oxidative stress in apoptosis, J. Immunol. Methods, 2002, 265, 49–72

    Article  PubMed  CAS  Google Scholar 

  23. Arora S., Jain J., Rajwade J.M., Paknikar K.M., Cellular responses induced by silver nanoparticles: In vitro studies, Toxicol. Lett., 2008, 179, 93–100

    Article  PubMed  CAS  Google Scholar 

  24. Rahman M.F., Wang J., Patterson T.A., Saini U.T., Robinson B.L., Newport G.D., et al., Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles, Toxicol. Lett., 2009, 187, 15–21

    Article  PubMed  CAS  Google Scholar 

  25. Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., Rowe J.J., Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster, Toxicol. Appl. Pharmacol., 2010, 242, 263–269

    Article  PubMed  CAS  Google Scholar 

  26. Choi J.E., Kim S., Ahn J.H., Youn P., Kang J.S., Park K., et al., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish, Aquat. Toxicol., 2010, 100, 151–159

    Article  PubMed  CAS  Google Scholar 

  27. Sun L., Singh A.K., Vig K., Pillai S.R., Singh S.R., Silver nanoparticles inhibit replication of respiratory syncytial virus, J. Biomed. Biotechnol., 2008, 4, 149–158

    CAS  Google Scholar 

  28. Duran N., Marcato P.D., De Conti R., Alves O.L., Costa F.T.M., Brocchi M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action, J. Braz. Chem. Soc., 2010, 21, 949–959

    Article  CAS  Google Scholar 

  29. Karelson E., Bogdanovic N., Garlind A., Winblad B., Zilmer K., Kullisaar T., et al., The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense, Neurochem. Res., 2001, 26, 353–361

    Article  PubMed  CAS  Google Scholar 

  30. Tang S., Tang Y., Gao F., Liu Z., Meng X., Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres, Nanotechnology, 2007, 18, 1–6

    Google Scholar 

  31. Melnig V., Ciobanu C., Characterization of water-soluble polyamidhydroxyurethane for biological applications, J. Optoelectron. Adv. M., 2005, 7, 2809–2815

    CAS  Google Scholar 

  32. Apostu M.O., Melnig V., Tunable temperature behaviour of water-soluble polyamidhydroxyurethane, J. Optoelectron. Adv. M., 2006, 8, 1044–1047

    CAS  Google Scholar 

  33. Melnig V., Pohoata V., Obreja L., Garlea A., Cazacu M., Water-soluble polyamidhydroxyuretane swelling behaviour, J. Optoelectron. Adv. M., 2006, 8, 1040–1043

    CAS  Google Scholar 

  34. Riddick T.M., Control of colloid stability through zeta potential, Livingston Pub. Co., New York, 1968

    Google Scholar 

  35. Hritcu L., Nabeshima T., Kainic acid lesion-induced spatial memory deficits of rats, Cent. Eur. J. Biol., 2009, 4, 179–185

    Article  Google Scholar 

  36. Hritcu L., Clicinschi M., Nabeshima T., Brain serotonin depletion impairs short-term memory, but not long-term memory in rats, Physiol. Behav., 2007, 91, 652–657

    Article  PubMed  CAS  Google Scholar 

  37. Winterbourne C.C., How Kins R.E., Brain M., Carrell R.W., The estimation of red cell superoxide dismutase activity, J. Lab. Clin. Med., 1975, 85, 327–341

    Google Scholar 

  38. Sharma M., Gupta Y.K., Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats, Life Sci., 2002, 71, 2489–2498

    Article  PubMed  CAS  Google Scholar 

  39. Ohkawa H., Ohishi N., Yagi K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, 95, 351–358

    Article  PubMed  CAS  Google Scholar 

  40. Tamba B.I., Jaba I.M., Bohotin C.R., Neagu A.N., Mungiu O.C., Wirth A., et al., Preliminary experimental data regarding the bioavailability and biodistribution of systematically administred TAW20 silica nanoparticle, In: 2nd European Conference for Clinical Nanomedicine-Nanotechnology for novel solutions in medicine, European Foundation for clinical nanomedicine (27–29 Apr 2009, Basel, Switzerland), 2009, III-80

  41. Downs R.T., Bartelmehs K.L., Gibbs G.V., Boysen Jr. M.B., Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials, Am. Mineral., 1993, 78, 1104–1107

    CAS  Google Scholar 

  42. Liau S.Y., Read D.C., Pugh W.J., Furr J.R., Russell A.D., Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions, Lett. Appl. Microbiol., 1997, 25, 279–283

    Article  PubMed  CAS  Google Scholar 

  43. Sondi I., Salopek-Sondi B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 2004, 275, 177–182

    Article  PubMed  CAS  Google Scholar 

  44. Brown D.M., Wilson M.R., MacNee W., Stone V., Donaldson K., Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines, Toxicol. Appl. Pharmacol., 2001, 175, 191–199

    Article  PubMed  CAS  Google Scholar 

  45. Muller M., Mackeben S., Muller-Goymann C.C., Physicochemical characterisation of liposomes with encapsulated local anaesthetics, Int. J. Pharm., 2004, 274, 139–148

    Article  PubMed  Google Scholar 

  46. Foley S., Crowley C., Smaihi M., Bonfils C., Erlanger B.F., Seta P., et al., Cellular localisation of a water-soluble fullerene derivative, Biochem. Biophys. Res. Commun., 2002, 294, 116–119

    Article  PubMed  CAS  Google Scholar 

  47. Block M.L., Wu X., Pei Z., Li G., Wang T., Qin L., et al., Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase, FASEB J., 2004, 18, 1618–1620

    PubMed  CAS  Google Scholar 

  48. Peters A., Veronesi B., Calderon-Garciduenas L., Gehr P., Chen L.C., Geiser M., et al., Translocation and potential neurological effects of fine and ultrafine particles a critical update, Part Fibre Toxicol., 2006, 3, 1–13

    Article  Google Scholar 

  49. Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., et al., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem. B, 2008, 112, 13608–13619

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Hritcu.

About this article

Cite this article

Hritcu, L., Stefan, M., Ursu, L. et al. Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats. cent.eur.j.biol. 6, 497–509 (2011). https://doi.org/10.2478/s11535-011-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0022-z

Keywords

Navigation