Skip to main content
Log in

The Effect of Aqueous Solution of Silver Nanoparticles on Rat Behavior

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNP) are known to penetrate the brain and cause pathological changes in central nervous system (CNS) functions. Still, it remains unclear whether AgNP solutions as antimicrobial agents are safe for humans. The attempt was undertaken to assess the risk of commercial silver nanoparticles for CNS, using a rat as a model and creating conditions as close as possible to human intake of aqueous AgNP solutions. The silver nanoparticle solutions prepared with natural stabilizer were used, a low dosage (51 μg/kg), intake with drinking water, and long-time exposure. We determined the effect of the AgNP solution on some indices of animal behavior—motor activity, anxiety, and short-term habituation (non-associative learning)—1 and 2 months after the start of the consumption and three months after the AgNP withdrawal. After the 2-month course, rats showed (1) an increase in motor activity and a decrease in anxiety-phobic levels under a stressful environment of a classic open field test, (2) a lack of short-term habituation in the acoustic startle, and (3) presence of the nanoparticles in the hippocampus, frontal cortex, and striatum as detected by transmission electron microscopy. These signs disappeared three months after the AgNP withdrawal. The results suggest that under experimental conditions close to actual human consumption, silver nanoparticles do not have a long-term adverse effect on the CNS functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. B. G. Lansdown, Crit. Rev. Toxicol. 37, 237 (2007). https://doi.org/10.1080/10408440601177665

    Article  CAS  Google Scholar 

  2. G. Oberdorster, J. Int. Med. 267, 89 (2010). https://doi.org/10.1111/j.1365-2796.2009.02187.x

    Article  CAS  Google Scholar 

  3. H. J. Johnston, G. Hutchison, and F. M. Christensen, Crit. Rev. Toxicol. 40, 328 (2010). https://doi.org/10.3109/10408440903453074

    Article  CAS  Google Scholar 

  4. S. Arora, J. M. Radjwade, and K. M. Paknikar, Toxicol. Appl. Pharmacol. 258, 151 (2012). https://doi.org/10.1016/j.taap.2011.11.010

    Article  CAS  Google Scholar 

  5. Z. Lan and W.-X. Yang, Nanomedicine 7, 579 (2012). https://doi.org/10.2217/nnm.12.20

    Article  CAS  Google Scholar 

  6. A. Pietroiusti, Nanoscale 4, 1231 (2012). https://doi.org/10.1039/C2NR11688J

    Article  CAS  Google Scholar 

  7. J. Pulit-Prociak, K. Stokłosa, and M. Banach, Environ. Chem. Lett. 15, 59 (2014). https://doi.org/10.1007/s10311-014-0490-2

    Article  CAS  Google Scholar 

  8. V. Kumar, N. Sharma, and S. S. Maitra, Int. Nano Lett. 7, 243 (2017). https://doi.org/10.1007/s40089-017-0221-3

    Article  CAS  Google Scholar 

  9. P. A. Schulte, V. Leso, M. Niang, and I. Iavicoli, Scand. J. Work. Environ. Health 45, 217 (2019). https://doi.org/10.5271/sjweh.3800

    Article  CAS  Google Scholar 

  10. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv. 27, 76 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  11. D. R. Monteiro, L. F. Gorup, A. S. Takamiya, et al., Int. J. Antimicrob. Agents 34, 103 (2009). https://doi.org/10.1016/j.ijantimicag.2009.01.017

    Article  CAS  Google Scholar 

  12. H. H. Lara, E. N. Garza-Treviño, L. Ixtepan-Turrent, et al., J. Nanobiotechnol. 9, 30 (2011). https://doi.org/10.1186/1477-3155-9-30

    Article  CAS  Google Scholar 

  13. G. E. Krichevsky, Application of Metal Nanoparticles in Medicine, Nanotechnological Society of Russia. http://www.rusnor.org/pubs/articles/15479.htm.

  14. M. Korani, E. Ghazizadeh, S. Korani, et al., Eur. J. Nanomed. 7, 51 (2015). https://doi.org/10.1515/ejnm-2014-0032

    Article  CAS  Google Scholar 

  15. Y. S. Kim, M. Y. Song, J. D. Park, et al., Part. Fibre Toxicol. 7, 20 (2010). https://doi.org/10.1186/1743-8977-7-20

    Article  CAS  Google Scholar 

  16. E.-J. Park, E. Bae, J. Yi, et al., Environ. Toxicol. Pharmacol. 30, 162 (2010). https://doi.org/10.1016/j.etap.2010.05.004

    Article  CAS  Google Scholar 

  17. I. V. Gmoshinski, A. A. Shumakova, V. A. Shipelin, G. Y. Maltsev, and S. A. Khotimchenko, Nanotechnol. Russ. 11, 646 (2016). https://doi.org/10.1134/S1995078016050074

    Article  CAS  Google Scholar 

  18. A. Pietroiusti, L. Campagnolo, and B. Fadeel, Small 9, 1557 (2012). https://doi.org/10.1002/smll.201201463

    Article  CAS  Google Scholar 

  19. M. Ema, H. Okuda, M. Gamo, et al., Reprod. Toxicol. 67, 149 (2017). https://doi.org/10.1016/j.reprotox.2017.01.005

    Article  CAS  Google Scholar 

  20. A. A. Antsiferova, Y. P. Buzulukov, V. A. Demin, V. F. Demin, P. K. Kashkarov, D. A. Rogatkin, E. N. Petritskaya, and L. F. Abaeva, Nanotechnol. Russ. 10, 100 (2015). https://doi.org/10.1134/S1995078015010024

    Article  CAS  Google Scholar 

  21. A. A. Antsiferova, Y. P. Buzulukov, P. K. Kashkarov, and M. V. Kovalchuk, Crystallogr. Rep. 61, 1020 (2016). https://doi.org/10.7868/S0023476116060035

    Article  CAS  Google Scholar 

  22. K. Dziendzikowska, J. Gromadzka-Ostrowska, A. Lankoff, et al., J. Appl. Toxicol. 32, 920 (2012). https://doi.org/10.1002/jat.2758

    Article  CAS  Google Scholar 

  23. H. S. Sharma, Nanomedicine 2, 753 (2007). https://doi.org/10.2217/17435889.2.6.753

    Article  CAS  Google Scholar 

  24. J. Tang, L. Xiong, G. Zhou, et al., J. Nanosci. Nanotechnol. 10, 6313 (2010). https://doi.org/10.1166/jnn.2010.2625

    Article  CAS  Google Scholar 

  25. A. Sharma, D. F. Muresanu, R. Patnaik, et al., Mol. Neurobiol. 48, 386 (2013). https://doi.org/10.1007/s12035-013-8500-0

    Article  CAS  Google Scholar 

  26. W. J. Trickler, S. M. Lantz, R. C. Murdock, et al., Toxicol. Sci. 118, 160 (2010). https://doi.org/10.1093/toxsci/kfq244

    Article  CAS  Google Scholar 

  27. A. M. Khan, B. Korzeniowska, V. Gorshkov, et al., Nanotoxicology 13, 221 (2019). https://doi.org/10.1080/17435390.2018.1540728

    Article  CAS  Google Scholar 

  28. M. Safari, S. A. Bidgoli, and S. M. Rezayat, Nanomed. J. 3 (2), 83 (2016). https://doi.org/10.7508/nmj.2016.02.002

    Article  CAS  Google Scholar 

  29. B. Zhang, N. Na Liua, Q. S. Liua, et al., Ecotoxicol. Environ. Saf. 198, 110674 (2020). https://doi.org/10.1016/j.ecoenv.2020.110674

    Article  CAS  Google Scholar 

  30. L. Hritcu, M. Stefan, L. Ursu, et al., Cent. Eur. J. Biol. 6, 497 (2011). https://doi.org/10.2478/s11535-011-0022-z

    Article  CAS  Google Scholar 

  31. Y. Liu, W. Guan, G. Ren, et al., Toxicol. Lett. 209, 227 (2012). https://doi.org/10.1016/j.toxlet.2012.01.001

    Article  CAS  Google Scholar 

  32. P. Liu, Z. Huang, and N. Gu, Ecotoxicol. Environ. Saf. 87, 124 (2013). https://doi.org/10.1016/j.ecoenv.2012.10.014

    Article  CAS  Google Scholar 

  33. Y. Zhang, S. A. Ferguson, F. Watanabe, et al., Small 9, 1715 (2013). https://doi.org/10.1002/smll.201201548

  34. N. Yin, Y. Zhang, Z. Yun, et al., Toxicol. Lett. 237, 112 (2015). https://doi.org/10.1016/j.toxlet.2015.06.007

    Article  CAS  Google Scholar 

  35. O. A. Zeinalov, S. P. Kombarova, D. V. Bagrov, et al., Obzory Klin. Farmakol. Lekarst. Terap. 14 (4), 42 (2016). https://doi.org/10.17816/RCF14442-51

    Article  Google Scholar 

  36. B. Dąabrowska-Bouta, M. Zięba, J. Orzelska-Górka, et al., Toxicology 363–364, 29 (2016). https://doi.org/10.1016/j.tox.2016.07.007

    Article  CAS  Google Scholar 

  37. A. Antsiferova, M. Kopaeva, and P. Kashkarov, Materials 11, 558 (2018). https://doi.org/10.3390/ma11040558

    Article  CAS  Google Scholar 

  38. A. Antsiferova, M. Kopaeva, V. N. Kochkin, et al., Toxics 9, 30 (2021). https://doi.org/10.3390/toxics9020030

    Article  CAS  Google Scholar 

  39. A. N. Ivlieva, E. N. Petritskaya, D. A. Rogatkin, et al., Phys. Part. Nucl. Lett. 18, 250 (2021).

    Article  CAS  Google Scholar 

  40. E. M. Egorova and A. A. Kubatiev, Nanotechnology: Research Methodology for the Effect of Metal Nanoparticles on Biological Objects (Yurait, Moscow, 2020) [in Russian].

    Google Scholar 

  41. Vitargol, Elusan LLC. https://vitargol.ru/nanosilver. Accessed May 26, 2021.

  42. E. M. Egorova, A. A. Kubatiev, and V. I. Shvets, Biological Effects of Metal Nanoparticles (Moscow, Nauka, 2014), p. 172 (in Russian).

    Google Scholar 

  43. E. M. Egorova and L. S. Sosenkova, “A method of obtaining aqueous solutions of silver nanoparticles with a natural reducing agent,” Patent RF No. 2618270 (2016).

  44. S. A. Kedik, A. V. Panov, V. S. Tyukova, and M. S. Zolotareva, Razrab. Pegistr. Lekarst. Sredstv 16 (3), 68 (2016).

    Google Scholar 

  45. P. dos Passos Menezesa, T. de Araujo Andradea, L. A. Frank, et al., Int. J. Pharm. 559, 312 (2019). https://doi.org/10.1016/j.ijpharm.2019.01.041

    Article  CAS  Google Scholar 

  46. Colloidal Silver Forte, Nature Sunshine Products, Inc. https://natr.ru/catalog/bad/kolloidnoe-serebro-forte/?sphrase_id=21898.

  47. T. A. Gus’kova, Toksikol. Vestn., No. 5, 2 (2010).

  48. V. I. Rodina, N. A. Krupina, G. N. Kryzhanovskii, and N. B. Oknina, Zh. Vyssh. Nerv. Deyat. 43, 1006 (1993).

    CAS  Google Scholar 

  49. A. A. Walf and Ch. A. Frye, Nat. Protoc. 2, 322 (2007). https://doi.org/10.1038/nprot.2007.44

    Article  CAS  Google Scholar 

  50. N. A. Krupina, N. N. Khlebnikova, and I. N. Orlova, Patol. Fiziol. Eksp. Ter. 59 (4), 4 (2015).

    CAS  Google Scholar 

  51. B. Valsamis and S. Schmid, J. Vis. Exp., No. 55, e3446 (2011). https://doi.org/10.3791/3446

  52. J. P. Wilcoxon, R. L. Williamson, and R. Baughman, J. Chem. Phys. 98, 9933 (1993). https://doi.org/10.1063/1.464320

    Article  CAS  Google Scholar 

  53. R. Kovner, J. A. Oler, and N. H. Kalin, Am. J. Psych. 176, 987 (2019). https://doi.org/10.1176/appi.ajp.2019.19101064

    Article  Google Scholar 

  54. T. M. Florio, E. Scarnati, I. Rosa, et al., CNS Neurosci. Ther. 24, 677 (2018). https://doi.org/10.1111/cns.12987

    Article  Google Scholar 

  55. J. Skalska and L. Struzyńska, Folia Neuropathol. 53, 281 (2015).

    Article  Google Scholar 

  56. Y. P. Buzulukov, I. V. Gmoshinski, A. A. Ansiferova, et al., Nano Hybrids Compos. 13, 199 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Egorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, E.M., Krupina, N.A., Kaba, S.I. et al. The Effect of Aqueous Solution of Silver Nanoparticles on Rat Behavior. Nanotechnol Russia 17, 248–260 (2022). https://doi.org/10.1134/S2635167622020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622020082

Navigation