Skip to main content
Log in

Some propagation methods for cloning holm oak (Quercus ilex L.) plants

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Holm oak (Quercus ilex L.), a typical evergreen tree of the Mediterranean area, is very important due to its ecological and economical values. Propagation of this species is extremely difficult and traditionally carried out only by seed germination. In this work, mature acorns were germinated in vitro and in peat substrate in aseptic and non-aseptic conditions. Explants from the seedlings obtained were propagated in vitro in WPM plus 4 µM BA. Plant regeneration was achieved from hypocotyls and root segments cultured in vitro on modified Gamborg medium plus 20 µM BA and 20 µM NAA. 13.8% of the hypocotyls and approximately 30% of the root segments developed both shoots and roots after 30 days of culture. Rooting of stem segments was obtained both in vitro and ex vitro by basal dipping in IBA solutions. Within ex vitro rooting, mother plant age had major influence on the percentage of rooting of the cuttings as the younger plants showed higher ability to root. In this way, Q. ilex plants could be propagated and cloned. The procedure described here would be a very useful tool for breeding programs since vegetative propagation of selected individuals can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

IBA:

indole-3-butyric acid

MS:

Murashige and Skoog medium

NAA:

a-naphthalene acetic acid

PVC:

polyvinyl chloride

WPM:

woody plant medium

References

  1. Mauri P.V., Manzanera J.A., Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos, Plant Cell Tissue Organ Cult., 2003, 74, 229–235

    Article  CAS  Google Scholar 

  2. Pascual G., Molinas M., Verdaguer D., Comparative anatomical analysis of the cotyledonary region in three Mediterranean Basin Quercus (Fagaceae), Am. J. Bot., 2002, 89, 383–392

    Article  Google Scholar 

  3. Plieninger T., Pulido F.J., Konold W., Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration, Environ. Conserv., 2003, 30, 61–70

    Article  Google Scholar 

  4. Shakesby R.A., Coelho C.O.A., Schnabel S., Keizer J.J., Clarke M.A., Contador J.F.L., et al., A ranking methodology for assessing relative erosion risk and its application to dehesas and montados in Spain and Portugal, Land Degrad. Dev., 2002, 13, 129–140

    Article  Google Scholar 

  5. Puerta-Piñero C., Gómez J.M., Zamora R., Species-specific effects on topsoil development affect Quercus ilex seedling performance, Acta Oecol., 2006, 29, 65–71

    Article  Google Scholar 

  6. Pulido F.J., Diaz M., Regeneration of a Mediterranean oak: A whole-cycle approach, Ecoscience, 2005, 12, 92–102

    Article  Google Scholar 

  7. Brasier C.M., Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change, Ann. Sci. Forest., 1996, 53, 347–358

    Article  Google Scholar 

  8. Gallego F.J., de Algaba A.P., Fernandez-Escobar R., Etiology of oak decline in Spain, Eur. J. Forest Pathol., 1999, 29, 17–27

    Article  Google Scholar 

  9. Soto A., Lorenzo Z., Gil L., Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of mediterranean open woods, Heredity, 2007, 99, 601–607

    Article  PubMed  CAS  Google Scholar 

  10. L’Helgoual’ch M., Espagnac H., First observations on the adventitious rhizogenic capacity of holm oak (Quercus ilex L.), Ann. Sci. Forest., 1987, 44, 325–334

    Article  Google Scholar 

  11. Sánchez M.C., San José M.C., Ballester A., Vieitez A.M., Requirements for in vitro rooting of Quercus robur and Quercus rubra shoots derived from mature trees, Tree Physiol., 1996, 16, 673–680

    PubMed  Google Scholar 

  12. Murashige T., Skoog F., A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiol. Plant., 1962, 15, 473–497

    Article  CAS  Google Scholar 

  13. Lloyd G.B., McCown B.H., Use of microculture for production and improvement of Rhododendron spp, Hortscience, 1980, 15, 416–417

    Google Scholar 

  14. Gamborg O.L., Miller R.A., Ojima K., Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res., 1968, 50, 151–158

    Article  PubMed  CAS  Google Scholar 

  15. García L.V., Controlling the false discovery rate in ecological research, Trends Ecol. Evol., 2003, 18, 553–554

    Article  Google Scholar 

  16. Pierik R.L.M., In vitro Culture of Higher Plants, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1987

    Google Scholar 

  17. Gonzalez-Benito M.E., Prieto R.M., Herradon E., Martin C., Cryopreservation of Quercus suber and Quercus ilex embryonic axes: In vitro culture, desiccation and cooling factors, CryoLetters, 2002, 23, 283–290

    PubMed  Google Scholar 

  18. Mauri P.V., Manzanera J.A., Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.), In Vitro Cell. Dev. Plant, 2004, 40, 495–498

    Article  CAS  Google Scholar 

  19. Broncano M.J., Riba M., Retana J., Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multifactor experimental approach, Plant Ecol., 2004, 138, 17–26

    Article  Google Scholar 

  20. Cortes P., Espelta J.M., Savé R., Biel C., Effects of a nursery CO2 enriched atmosphere on the germination and seedling morphology of two Mediterranean oaks with contrasting leaf habit, New Forest., 2004, 28, 79–88

    Article  Google Scholar 

  21. Gómez J.M., Importance of microhabitat and acorn burial on Quercus ilex early recruitment: non-additive effects on multiple demographic processes, Plant Ecol., 2004, 172, 287–297

    Article  Google Scholar 

  22. Pulido F.J., Herbivorismo y regeneración de la encina (Quercus ilex L.) en bosques y dehesas, PhD Thesis, University of Extremadura, Spain, 1999

    Google Scholar 

  23. Pulido F.J., Díaz M., Hidalgo S.J., Size-structure and regeneration of holm oak (Quercus ilex) forest and dehesas: effects of agroforestry use on their long-term sustainability, For. Ecol. Manage., 2001, 146, 1–13

    Article  Google Scholar 

  24. Féraud-Keller C., Espagnac H., Conditions d’apparition d’une embryogénèse somatique sur des cals issus de la culture de tissus foliaires du chêne vert (Quercus ilex) (Conditions for the appearance of somatic embryogenesis on callus from leaf tissue cultures of holm oak (Quercus ilex)), Can. J. Bot., 1989, 67, 1066–1070, (in French)

    Google Scholar 

  25. Kormanik P.P., Brown C.L., Vegetative propagation of some selected hardwood forest species in the south eastern United States, New Zeal. J. Forest. Sci., 1974, 4 228–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. García.

About this article

Cite this article

Liñán, J., Cantos, M., Troncoso, J. et al. Some propagation methods for cloning holm oak (Quercus ilex L.) plants. cent.eur.j.biol. 6, 359–364 (2011). https://doi.org/10.2478/s11535-011-0007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0007-y

Keywords

Navigation