Skip to main content
Log in

The impact of local spatial resistance on the movement behaviour of Tenebrio molitor L.

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Although the impact of vegetation and other environmental factors on the distribution of terrestrial invertebrates has been known since the 1950s, basic knowledge about their interaction with micro-landscape elements is lacking. In experimental model systems, the impact of varying local spatial resistance (LSR) on the distribution of Tenebrio molitor individuals was analysed in the laboratory. In the setups, LSR led to a reduction of the average distance covered (move step length) and a reduction of the velocity (the maximum speed ranging from 36.1 in the control groups to 20.4 [mm*step−1] in areas with a maximum LSR). Also, the covered distances per individual varied among three groups, from 2.97 m in the control to 1.11 m in areas with medium LSR to 0.88 m in areas with maximum LSR. Thus, in areas with LSR, animals were forced by their habitats to perform shorter move steps on average and covered less distance. The distance covered (i.e., dispersal performances) were not correlated with such factors as sex, weight and length of the Tenebrio individuals from other studies. Analysis of the data for net squared displacement indicated that the dispersal of the beetles did not follow a diffusion process. The move step directions of the dispersal data showed pronounced autocorrelation, which means that in contrast to other findings, the individuals were not performing a random walk. This effect was strongly dependent on the temporal resolution (i.e. grain), and was also influenced by the experimental conditions. The entire array of data showed high variability among the sub-groups (as well as many outliers), revealing nonparametric characteristics. The results showed that the specific physical configuration of suitable habitat for Tenebrio is one of the key indicators of landscape connectivity on the micro-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Andrewartha and L.C. Birch: The Distribution and Abundance of Animals, The University of Chicago Press, Chicago, Illinois, 1954.

    Google Scholar 

  2. R. Levins: “Some demographic and genetic consequences of environmental heterogeneity for biological control”, Bull. Entom. Soc. Am., Vol. 15, (1969), pp. 237–240.

    Google Scholar 

  3. I. Hanski: “Single-species metapopulation dynamics: concepts, models, and observations”, Biol. J. Linn. Soc., Vol. 42, (1991), pp. 17–38.

    Google Scholar 

  4. P. Turchin: Quantitative Analysis of Movement: measuring and modeling population redistribution in plants and animals, Sinauer Associates, Sunderland, MA, 1998.

    Google Scholar 

  5. J.A. Wiens: “The landscape context of dispersal”, In: J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols (Eds.): Dispersal: Individual, Population and community, Oxford University Press, Oxford, 2001, pp. 96–109.

    Google Scholar 

  6. K.A. With and T.O. Crist: “Critical Thresholds in Species Responses to Landscape Structure”, Ecology, Vol. 76(8), (1995), pp. 2446–2459.

    Article  Google Scholar 

  7. N.E. McIntyre: “Scale-dependent habitat selection by the darkling beetle Eleodes hispilabris (Coleoptera: Tenebrionidae)”, Am. Midl. Nat., Vol. 138, (1997), pp. 230–235.

    Article  Google Scholar 

  8. B. Breckling, H. Reuter H. and U. Middelhoff: “Self-organisation simplified: Simulating spatial structures which emerge from non-directed ecological interactions”, In: J. Sklenar (Ed.): Proceedings of the 26th ASU conference-Object oriented modelling and simulation, Malta, 2000, pp. 75–85.

  9. N.L Cuong and M.B. Cohen: “Mating and dispersal behaviour of Scirpophaga incertulas and Chilo suppressalis (Lepidoptera; Pyralidae) in relation to resistance management for rice transformed with Bacillus thuringiensis toxin genes”, Int. J. Pest Manag., Vol. 49(4), (2003), pp. 275–279.

    Article  CAS  Google Scholar 

  10. S. Boinski, L. Kauffman, E. Ehmke, S. Schet and A. Vreedzaam: “Dispersal patterns among three species of squirrel monkeys (Saimiri oerstedii, S. boliviensis and S. sciureus): I. Divergent costs and benefits”, Behaviour, Vol. 142(5), (2005), pp. 525–632.

    Article  Google Scholar 

  11. T.R.E. Southwood: Ecological methods, Halsted Press, Chapman and Hall, London, 1978.

    Google Scholar 

  12. T.R.E Southwood and P.A. Henderson: Ecological methods, 3rd ed., Blackwell Science, Malden, Massachusetts, 2000.

    Google Scholar 

  13. A. Brauns: “Taschenbuch der Waldinsekten: Grundriß einer terrestrischen Bestandes-und Standort-Entomologie”, G. Fischer, Stuttgart, 1991.

    Google Scholar 

  14. K. Honomichl: “Biologie und Ökologie der Insekten-Ein Taschenlexikon von Werner Jacobs und Maximilian Renner”, Spektrum Akademischer Verlag, Heidelberg, 1998.

    Google Scholar 

  15. M. Pihaja, M. Koivula and J. Niemela: “Responses of boreal carabid beetle assemblages (Coleoptera, Carabidae) to clear-cutting and top-soil preparation”, Forest. Ecol. Manag., Vol. 222(1–3), (2006), pp. 182–190.

    Article  Google Scholar 

  16. E. Sieren and F.P. Fischer: “Evaluation of measures for enlargement, renaturation and development of a dry grassland biotope by analysing differences in the carabid fauna (Coleoptera)”, Acta Oecol., Vol. 23(1), (2002), pp. 1–12.

    Article  Google Scholar 

  17. B. Zodl and K.J. Wittmann: “Effects of sampling, preparation and defecation on metal concentrations in selected invertebrates at urban sites”, Chemosphere, Vol. 52(7) (2003), pp. 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  18. F. Soldati and P. Leo: “Revision of French and Corsican species of the genus Asida Latreille, 1802 (Insecta: Coleoptera: Tenebrionidae)”, Ann. Zool., Vol. 55(3), (2005), pp. 335–373.

    Google Scholar 

  19. S. Scheu, D. Albers, J. Alphei, R. Buryn, U. Klages, S. Migge, C. Platner and J.A. Salamon: “The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces”, Oikos, Vol. 101(2), (2003), pp. 225–238.

    Article  Google Scholar 

  20. A. Sander, T. Purtauf, S. Holzhauer and V. Wolters: “Landscape Effects on the Genetic Structure of the Ground Beetle Poecilus versicolor STURM 1824”, Biodivers, Conserv., Vol. 15(1), (2006), pp. 245–259.

    Article  Google Scholar 

  21. P.D. Taylor, L. Fahrig, K. Henein and G. Merriam: “Connectivity is a vital element of landscape structure”, Oikos, Vol. 68, (1993), pp. 571–573.

    Google Scholar 

  22. G. Merriam, K. Henein and K. Stuart-Smith: “Landscape dynamics models”, In: M.G. Turner and R.H. Gardner (Eds.): Quantitative Methods in Landscape Ecology, Springer-Verlag, New York, 1991, pp. 399–416.

    Google Scholar 

  23. J. Pither and P.D. Taylor: “An experimental assessment of landscape connectivity”, Oikos, Vol. 83, (1998), pp. 166–174.

    Google Scholar 

  24. J.A. Wiens: “Metapopulation dynamics and landscape ecology”, In: M. Gilpin and I. Hanski (Eds.): Metapopulation biology: ecology, genetics and evolution, Academic Press, 1997, pp. 43–62.

  25. B. Heydemann: “Die Biotopstruktur als Raumwiderstand und Raumfülle für die Tierwelt”, Verh. Dtsch. Zool. Ges., (1957), pp. 332–347.

  26. J.A. Wiens and B.T. Milne: “Scaling of ‘landscapes’ in landscape ecology, or landscape ecology from a bettle’s perspective”, Landscape Ecol., Vol. 3, (1989), pp. 87–96.

    Article  Google Scholar 

  27. T.O. Crist, D.S. Guertin, J.A. Wiens and B.T. Milne: “Animal movements in heterogeneous landscapes: an experiment with Eleodes beetles in short grass prairie”, Funct. Ecol., Vol. 6, (1992), pp. 536–544.

    Article  Google Scholar 

  28. J.A. Wiens, R.L. Schooley and R.D. Weeks: “Patchy landscapes and animal movements: do beetles percolate?” Oikos, Vol. 78, (1997), pp. 257–264.

    Google Scholar 

  29. P.M. Kareiva and N. Shigesada: “Analyzing insect movement as a correlated random walk”, Oecologia, Vol. 56, (1983), pp. 234–238.

    Article  Google Scholar 

  30. J.M. Morales and S.P. Ellner: “Scaling up movements in heterogeneous landscapes: the importance of behavior”, Ecology, Vol. 83(8), (2002), pp. 2240–2247.

    Google Scholar 

  31. R.A. Ims: “Movement patterns related to spatial structures”, In: L. Hansson, L. Fahrig and G. Merriam (Eds.): Mosaic landscapes and ecological processes, Chapman and Hall, London, 1995, pp. 85–109.

    Google Scholar 

  32. J.M. Morales: “Behavior at habitat boundaries can produce leptokurtic movement distributions”, Am. Nat., Vol. 160(4), (2002), pp. 531–538.

    Article  PubMed  Google Scholar 

  33. F. Jopp and H. Reuter: “Dispersal of carabid beetles-emergence of distribution patterns”, Ecol. Mod., Vol. 186, (2005), pp. 389–405.

    Article  Google Scholar 

  34. H. Kaiser: “Populationsdynamik und Eigenschaften einzelner Individuen”, Verh. Ges. Ökol., Vol. 4, (1975), pp. 25–38.

    Google Scholar 

  35. D.L. DeAngelis and L.J. Gross: Individual-Based Models And Approaches in Ecology, Chapman and Hall, New York, 1992.

    Google Scholar 

  36. R. Ihaka and R. Gentleman: “R: a language for data analysis and graphics”, J. Comput. Graph. Stat., Vol. 5, (1996), pp. 299–314.

    Article  Google Scholar 

  37. V. Nordmeier, T. Kersting and W. Hahn: VIANA-3.64-automatical VIdeo ANAlysis, http://didaktik.physik.uni-essende/viana/, (2006).

  38. F. Jopp: “Comparative studies on the dispersal of the Great Ramshorn Planorbarius corneus L. —A modelling approach”, Limnologica, Vol. 36, (2006), pp. 17–25.

    Google Scholar 

  39. F. Jopp: Empirical Studies and modeling approaches of invertebrates in a fen-wetland system, Thesis (PhD), Free University of Berlin, Berlin, 2003.

    Google Scholar 

  40. J.G. Skellam: “The formulation and interpretation of mathematical models of diffusional process in population biology”, In: M.S. Bartlett and R.W. Hiorns (Eds.): The mathematical theory of the Dynamic of Biological Populations, Academic Press, New York, 1973, pp. 63–85.

    Google Scholar 

  41. G. Bahrenberg, E. Giese and J. Nipper: “Statistische Methoden in der Geographie, Band 2 ‘Multivariate Statistik’”, Studienbücher Geographie, Stuttgart, Teubner, 1992.

    Google Scholar 

  42. D.A. Griffith: Advanced spatial statistics, Kluwer, Dordrecht, 1998.

    Google Scholar 

  43. R.R. Sokal and N.L. Oden: “Spatial autocorrelation in biology. I. Methodology”, Biol. J. Linn. Soc., Vol. 10, (1978), pp. 199–228.

    Google Scholar 

  44. S.J. Turner, R.V. O’Neill, W. Conley and H.C. Humphries: “Pattern and scale: statistics for landscape ecology”, In: M.G. Turner and R.H. Gardner (Eds.): Quantitative methods in landscape ecology, Springer-Verlag, New York, 1991, pp. 17–49.

    Google Scholar 

  45. J.C. Davis: Statistics and Data Analysis in Geology, John Wiley & Sons, New York, 1986.

    Google Scholar 

  46. M.L. Cain: “The analysis of angular data in ecological field studies”, Ecology, Vol. 70, (1989), pp. 1540–1543.

    Article  Google Scholar 

  47. M.A. Baars: “Patterns of movement of radioactive Carabid beetles”, Oecologia, Vol. 44, (1979), pp. 125–140.

    Article  Google Scholar 

  48. A.W. Lauterbach: “Verbreitungs-und aktivitätsbestimmende Faktoren bei Carabiden in sauerländischen Wäldern”, Abh. Land. Mus. Nat. Kd. Münst., Vol. 26(4), (1964), pp. 1–103.

    Google Scholar 

  49. F. Jopp and C. Lange: “Improving data interpretation of fragmentary data sets on invertebrate dispersal with permutation tests”, Acta Oecol., (2006), in print.

  50. B. Breckling: “Uniqueness of ecosystems versus generalizability and predictability in ecology”, Ecol. Mod., Vol. 63, (1992), pp. 13–27.

    Article  Google Scholar 

  51. B. Breckling and K. Mathes: “Systemmodelle in der Ökologie: Individuen-orientierte und kompartiment-bezogene Simulation, Anwendungen und Kritik”, Verh. Ges. Ökol., Vol. 19(3), (1991), pp. 635–646.

    Google Scholar 

  52. M.G. Turner and R.H. Gardner: Quantitative methods in landscape ecology, Springer-Verlag, New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Jopp, F. The impact of local spatial resistance on the movement behaviour of Tenebrio molitor L.. cent.eur.j.biol. 1, 412–429 (2006). https://doi.org/10.2478/s11535-006-0025-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-006-0025-3

Keywords

Navigation