Skip to main content
Log in

A finite volume method for solving the two-sided time-space fractional advection-dispersion equation

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Metzler, J. Klafter, Phys. Rep. 339, (2000)

  2. Y. Zhang, D. A. Benson, D. M. Reeves, Adv. Water Resour. 32, (2009)

  3. I. Podlubny, Fractional Differential Equations (Academic Press, 1999)

    MATH  Google Scholar 

  4. M. M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, (2006)

  5. K. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order (Academic Press, 1974)

    MATH  Google Scholar 

  6. Y. Lin, C. Xu, J. Comput. Phys. 225, 1533 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. M. M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, (2004)

  8. M. M. Meerschaert, H.-P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, (2006)

  9. C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, J. Comput. Phys. 213, (2006)

  10. K. Moaddy, I. Hashim, S. Momani, Comput. Math. Appl. 62, 1068 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Moaddy, S. Momani, I. Hashim, Comput. Math. Appl. 61, 1209 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Momani, A. Rqayiq, D. Baleanu, Int. J. Bifurcat. Chaos 22, 1250079 (2012)

    Article  Google Scholar 

  13. P. Zhuang, F. Liu, V. Anh, I. Turner, SIAM J. Numer. Anal. 47, (2012)

  14. H. Sun, W. Chen, Y. Chen, Physica A: Statistical Mechanics and its Applications 388, 4586 (2009)

    Article  ADS  Google Scholar 

  15. S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Appl. Math. Comput. 218, 10861 (2012)

    Article  MathSciNet  Google Scholar 

  16. H. Sun, W. Chen, C. LI, Y. Chen, Int. J. Bifurcat. Chaos 22, 1250085 (2012)

    Article  MathSciNet  Google Scholar 

  17. H. Wang, K. Wang, T. Sircar, J. Comput. Phys. 229, 8095 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. K. Wang, H. Wang, Adv. Water Resour. 34, 810 (2011)

    Article  ADS  Google Scholar 

  19. H.-K. Pang, H.-W. Sun, J. Comput. Phys. 231, 693 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. T. Moroney, Q. Yang, Comput. Math. Appl. 66, 659 (2013)

    Article  MathSciNet  Google Scholar 

  21. T. Moroney, Q. Yang, J. Comput. Phys. 246, 304 (2013)

    Article  ADS  Google Scholar 

  22. X. Zhang, J. W. Crawford, L. K. Deeks, M. I. Stutter, A. G. Bengough, I. M. Young, Water Resour. Res. 41, (2005)

  23. X. Zhang, M. Lv, J. W. Crawford, I. M. Young, Adv. Water Resour. 30, 1205 (2007)

    Article  ADS  Google Scholar 

  24. H. Hejazi, T. Moroney, F. Liu, J. Comput. Appl. Math. 255, 684 (2014)

    Article  MathSciNet  Google Scholar 

  25. S. Kim, M. L. Kavvas, J. Hydro. Eng. 1, (2006)

  26. Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, (2010)

  27. S. Shen, F. Liu, V. Anh, Numer. Algorithms 56, (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala Hejazi.

About this article

Cite this article

Hejazi, H., Moroney, T. & Liu, F. A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. centr.eur.j.phys. 11, 1275–1283 (2013). https://doi.org/10.2478/s11534-013-0317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0317-y

Keywords

Navigation