Skip to main content
Log in

Legendre multiwavelet collocation method for solving the linear fractional time delay systems

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this article the Legendre multiwavelet basis with aid of collocation method has been applied to give approximate solution for fractional delay systems. The properties of Legendre multiwavelet are presented. These properties together with the collocation method are then utilized to reduce the problem to the solution of algebraic system. Numerical results and comparison with exact solutions in the cases when we have exact solution are given in test examples in order to demonstrate the applicability and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983)

    Article  ADS  MATH  Google Scholar 

  2. R.L. Bagley, P.J. Torvik, AIAA J. 23, 918 (1985)

    Article  ADS  MATH  Google Scholar 

  3. R. L. Magin, Crit. Rev. Biomed. Eng. 32, 1 (2004)

    Article  Google Scholar 

  4. T. S. Chow, Phys. Lett. A. 342, 148 (2005)

    Article  ADS  Google Scholar 

  5. M. Zamani, M. Karimi-Ghartemani, N. Sadati, Journal of Fractional Calculus and Applied Analysis (FCAA) 10, 169 (2007)

    MATH  MathSciNet  Google Scholar 

  6. J.A. Machado, Syst. Anal. Model. Sim. 27, 107 (1997)

    MATH  Google Scholar 

  7. I.S. Jesus, J.A. Machado, Nonlinear Dynam. 54, 263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Podlubny, IEEE T. Automat. Contr. 44, 208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. X. Zhang, Appl. Math. Comput. 197, 407 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. W. deng, C. Li, J. Lu, Nonlinear Dynam. 48, 409 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. P. Lazarevic, A. M. Spasic, Math. Comput. Model. 49, 475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. C.K. Chui, Wavelets: A mathematical tool for signal analysis (SIAM, Philadelphia PA, 1997)

    Book  MATH  Google Scholar 

  13. Q. Ming, C. Hwang, Y.P. Shih, Int. J. Numer. Meth. Eng. 39, 2921 (1996)

    Article  MATH  Google Scholar 

  14. G. Beylkin, R. Coifman, V. Rokhlinn, Commun. Pur. Appl. Math. 44, 141 (1991)

    Article  MATH  Google Scholar 

  15. S. A. Yousefi, A. Lotfi, M. Dehghan, J. Vib. Control 17, 2059 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Saadatmandi, M. Dehghan, J. Vib. Control 17, 2050 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. S. A. Yousefi, Numer. Meth. Part. D. E. 26, 535 (2010)

    MATH  MathSciNet  Google Scholar 

  18. C. Canuto, M. Y. Hussaini, A. Quarternioni, T. A. Zang, Spectral methods in fluid dynamics (Springer-Verlag, Berlin, 1988)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Ali Yousefi.

About this article

Cite this article

Yousefi, S.A., Lotfi, A. Legendre multiwavelet collocation method for solving the linear fractional time delay systems. centr.eur.j.phys. 11, 1463–1469 (2013). https://doi.org/10.2478/s11534-013-0283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0283-4

Keywords

Navigation