Skip to main content
Log in

Existence and approximation of solutions of fractional order iterative differential equations

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this paper, we investigate existence and approximation of solutions of fractional order iterative differential equations by virtue of nonexpansive mappings, fractional calculus and fixed point methods. Three existence theorems as well as convergence theorems for a fixed point iterative method designed to approximate these solutions are obtained in two different work spaces via Chebyshev’s norm, Bielecki’s norm and β norm. Finally, an example is given to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Kelley, Iterative methods for linear and nonlinear equations (Society for Industrial and Applied Mathematics, Philadelphia, 1995)

    Book  MATH  Google Scholar 

  2. K. Wang, Funkcialaj Ekvacioj 33, 405 (1990)

    MATH  MathSciNet  Google Scholar 

  3. M. Medveď, Ann. Polonici Math. LIV. 3, 263 (1991)

    Google Scholar 

  4. M. Fečkan, Math. Slovaca 43, 39 (1993)

    MATH  MathSciNet  Google Scholar 

  5. J. Si, Xi. Wang, J. Math. Anal. Appl. 226, 377 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Stanek, Funct. Diff. Eqs. 5, 463 (1998)

    MATH  MathSciNet  Google Scholar 

  7. J. Liu, Results Math. 55, 129 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Egri, I. A. Rus, Mathematica 52, 67 (2007)

    MATH  MathSciNet  Google Scholar 

  9. V. Muresan, Novi Sad J. Math. 33, 1 (2003)

    MathSciNet  Google Scholar 

  10. V. Berinde, Miskolc Math. Notes 11, 13 (2010)

    MATH  MathSciNet  Google Scholar 

  11. M. Lauran, Filomat, 25, 21 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Baleanu, J. A. T. Machado, A.C.-J. Luo, Fractional dynamics and control (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  13. K. Diethelm, Lect. Notes Math. 2004 (2010)

    Google Scholar 

  14. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations (Elsevier Science B.V., Amsterdam, 2006)

    MATH  Google Scholar 

  15. V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems (Cambridge Scientific Publishers, Cambridge, 2009)

    MATH  Google Scholar 

  16. K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations (John Wiley, New York, 1993)

    MATH  Google Scholar 

  17. M. W. Michalski, Derivatives of noninteger order and their applications, Dissertationes Mathematicae, CCCXXVIII (Inst. Math., Polish Acad. Sci., Warsaw, 1993)

    Google Scholar 

  18. I. Podlubny, Fractional differential equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  19. V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media (Springer, HEP, New York, 2011)

    Google Scholar 

  20. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Series on complexity, nonlinearity and chaos (World Scientific, Singapore, 2012)

    Google Scholar 

  21. S. Abbas, M. Benchohra, G. M. N’Guérékata, Topics in fractional differential equations (Springer, 2012)

    Book  MATH  Google Scholar 

  22. J. Klafter, S. C. Lim, R. Metzler, Fractional dynamics in physics: Recent advances (World Scientific, Singapore, 2012)

    Google Scholar 

  23. A. Debbouche, D. Baleanu, R. P. Agarwal, Bound. Value Probl. 2012, 78 (2012)

    Article  MathSciNet  Google Scholar 

  24. D. Baleanu, O. G. Mustafa, R. P. Agarwal, Abstr. Appl. Anal. 2010, 865139 (2010)

    MathSciNet  Google Scholar 

  25. D. Baleanu, O. G. Mustafa, R. P. Agarwal, Comput. Math. Appl. 62, 1492 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Baleanu, O. G. Mustafa, R. P. Agarwal, Appl. Math. Lett. 23, 1129 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Ahmad, J. J. Nieto, Topol. Methods Nonlinear Anal. 35, 295 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  28. Z. Bai, Nonlinear Anal.:TMA 72, 916 (2010)

    Article  MATH  Google Scholar 

  29. Y. K. Chang, J. J. Nieto, Math. Comput. Model. 49, 605 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Zhou, F. Jiao, Nonlinear Analysis:RWA 11, 4465 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Hernández, D. O’Regan, K. Balachandran, Nonlinear Anal.:TMA 73, 3462 (2010)

    Article  MATH  Google Scholar 

  32. M. Fečkan, Y. Zhou, J. Wang, Commun. Nonlinear Sci. Numer. Simulat. 17, 3050 (2012)

    Article  ADS  MATH  Google Scholar 

  33. J. Wang, M. Fečkan, Y. Zhou, Appl. Math. Model. 37, 6055 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Wang, M. Fečkan, Y. Zhou, J. Optim. Theory Appl. 156, 13 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. T. F. Nonnenmacher, W. G. Glockle, Philosophical Magazine Letters 64, 89 (1991)

    Article  ADS  Google Scholar 

  36. H. Schiessel, A. Blumen, J. Physics A: Mathematical and General 26, 5057 (1993)

    Article  ADS  Google Scholar 

  37. T. F. Nonnenmacher, R. Metzler, Applications of fractional calculus techniques to problems in biophysics, Applications of Fractional Calculus in Physics (World Scientific Publishing, Singapore, 2000) 377

    Book  Google Scholar 

  38. R. Metzler, T. F. Nonnenmacher, Int. J. Plasticity 19, 941 (2003)

    Article  MATH  Google Scholar 

  39. S. M. Jung, T. S. Kim, K. S. Lee, Bull. Korean Math. Soc. 43, 531 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

About this article

Cite this article

Deng, J., Wang, J. Existence and approximation of solutions of fractional order iterative differential equations. centr.eur.j.phys. 11, 1377–1386 (2013). https://doi.org/10.2478/s11534-013-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0270-9

Keywords

Navigation