Skip to main content
Log in

Tables of Rosseland mean opacities for candidate atmospheres of life hosting free-floating planets

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The existence of life on a free-floating planet is conditioned by the existence of an optically thick atmosphere. This may ensure the long-term thermal stability of a (liquid) solvent on the surface of that body. Requirements to be fulfilled by a hypothetic gas constituent of a free-floating planet atmosphere are studied. The four gases analyzed here (nitrogen, carbon dioxide, methane and ethane) are candidates. They may induce a higher opacity than molecular hydrogen, which has been considered in previous research. The paper deals with preparation of tables of Rosseland mean opacity values. Selection of the ranges of temperature and pressure is guided by life existence considerations. The range of temperatures involved (50 to 650 K) is lower than usually found in the literature. The tables may be useful for studies related to free-floating planets, where the usage of absorption opacity is a straightforward way to compute the energy flux in the atmosphere. Also, the results are useful in all cases where radiation is transferred through dense layers of the gases considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shapley, Of Stars and Men: The Human Response to an Expanding Universe (ELEK Books, London, 1958) 56

    Google Scholar 

  2. H. Shapley, Crusted Stars and Self-Heating Planets, Matemática y Teorética, Serie A (Tucumán National University, Argentina, 1962) 14

    Google Scholar 

  3. M. J. Fogg, MSc thesis, Queen Mary College, University of London (London, UK, 2002)

  4. D. J. Stevenson, Nature 400, 32 (1999)

    Article  ADS  Google Scholar 

  5. The Limits of Organic Life in Planetary Systems, Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council (National Academic Press, Washington DC, 2007)

  6. J. W. Ferguson et al., Astrophys. J. 623, 585 (2005)

    Article  ADS  Google Scholar 

  7. C. M. Sharp, A. Burrows, Astrophys. J. Suppl. S. 168, 140 (2007)

    Article  ADS  Google Scholar 

  8. R. S. Freedman, M. S. Marley, K. Lodders, Astrophys. J. Suppl. S. 174, 504 (2008)

    Article  ADS  Google Scholar 

  9. K. Lodders, Astrophys. J. 519, 793 (1999)

    Article  ADS  Google Scholar 

  10. K. Lodders, B. Fegley Jr., Icarus 155, 393 (2002)

    Article  ADS  Google Scholar 

  11. E. J. Öpik, Irish Astron. J. 6, 290 (1964)

    Google Scholar 

  12. M. J. Fogg, Comments on Astrophysics 14, 357 (1990)

    ADS  Google Scholar 

  13. R. L. S. Taylor, J. Brit. Inter. Soc. 54, 19 (2001)

    ADS  Google Scholar 

  14. A. Burrows et al., Astrophys. J. 491, 856 (1997)

    Article  ADS  Google Scholar 

  15. W. Bains, Astrobiology 4, 137 (2004)

    Article  ADS  Google Scholar 

  16. D. Schulze-Makuch, L. N. Irwin, Naturwissenschaften 93, 155 (2006)

    Article  ADS  Google Scholar 

  17. C. D. Hodgman (Ed.), Handbook of Chemistry and Physics, 44th edition, (CRC Press, Cleveland, 1963) 2390

    Google Scholar 

  18. D. J. Stevenson, Planet. Space Sci. 30, 755 (1982)

    Article  ADS  Google Scholar 

  19. A. N. Cox, Astrophys. J. Suppl. S. 94 (1965)

  20. C. A. Iglesias, F. J. Rogers, Astrophys. J. 371, 408 (1991)

    Article  ADS  Google Scholar 

  21. C. A. Iglesias, F. J. Rogers, Astrophys. J. 412, 752 (1993)

    Article  ADS  Google Scholar 

  22. C. A. Iglesias, F. J. Rogers, Astrophys. J. 464, 943 (1996)

    Article  ADS  Google Scholar 

  23. F. J. Rogers, C. A. Iglesias, Astrophys. J. Suppl. S. 79, 507 (1992)

    Google Scholar 

  24. F. J. Rogers, C. A. Iglesias, Astrophys. J., 401, 361 (1992)

    Article  ADS  Google Scholar 

  25. F. J. Rogers, F. J. Swenson, C. A. Iglesias, Astrophys. J. 456, 902 (1996)

    Article  ADS  Google Scholar 

  26. M. J. Seaton, Mon. Not. R. Astron. Soc. 362, L1 (2005)

    Article  ADS  Google Scholar 

  27. T. Tsuji, Astron. Astrophys. Suppl. S. 23, 411 (1973)

    ADS  Google Scholar 

  28. D. R. Alexander, Astrophys. J. Suppl. S. 29, 363 (1975)

    Article  ADS  Google Scholar 

  29. D. R. Alexander, H. R. Johnson, R. L. Rypma, Astrophys. J. 272, 773 (1983)

    Article  ADS  Google Scholar 

  30. D. R. Alexander, J. W. Ferguson, IAU Colloq. 146, 149 (1994)

    ADS  Google Scholar 

  31. D. R. Alexander, J. W. Ferguson, Astrophys. J. 437, 879 (1994)

    Article  ADS  Google Scholar 

  32. C. M. Sharp, Astron. Astrophys. 94, 1 (1992)

    ADS  Google Scholar 

  33. D. Semenov, T. Henning, C. Helling, M. Ilgner, E. Sedlmayr, Astron. Astrophys. 410, 611 (2003)

    Article  ADS  Google Scholar 

  34. T. Guillot, Physics of substellar objects. Interiors, Atmosphere, Evolution. 31th Saas — Fee Advanced Course on Brown Dwarfs and Planets, November 23, 2001

  35. L. S. Rothman et al., J. Quant. Spectrosc. Ra. 82, 5 (2003)

    Article  ADS  Google Scholar 

  36. L. S. Rothman et al., J. Quant. Spectrosc. Ra. 96, 139 (2005)

    Article  ADS  Google Scholar 

  37. N. Jacquinet-Husson et al., J. Quant. Spectrosc. Ra. 62, 205 (1999)

    Article  ADS  Google Scholar 

  38. N. Jacquinet-Husson et al., Proc. of the 13th Int. TOVS Study Conf. (ITSC-13), Sainte-Adle, Canada, 28 X — 4 XI 2003

  39. N. Jacquinet-Husson et al., J. Quant. Spectrosc. Ra. 95, 429 (2005)

    ADS  Google Scholar 

  40. H. Partridge, D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997)

    Article  ADS  Google Scholar 

  41. R. J. Barber, J. Tennyson, G. J. Harris, R. N. Tolchenov, Mon. Not. R. Astron. Soc. 368, 1087 (2006)

    Article  ADS  Google Scholar 

  42. L. S. Rothman et al., J. Quant. Spectrosc. Ra. 60, 665 (1998)

    Article  ADS  Google Scholar 

  43. M. Klepisch, D. Duffy, W. H. Goldstein, Z. Phys. D Atom. Mol. Cl. 21, S185 (1991)

    Article  ADS  Google Scholar 

  44. E. Peytremann, Astron. Astrophys. 33, 203 (1974)

    ADS  Google Scholar 

  45. C. Helling, PhD thesis, Technical University Berlin (Berlin, Germany, 1999)

  46. H. R. Johnson, B. M. Krupp, Astrophys. J. 206, 201 (1976)

    Article  ADS  Google Scholar 

  47. I. Hubeny, A. Burrows, D. Sudarsky, Astrophys. J. 594, 1011 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Badescu.

Electronic supplementary material

About this article

Cite this article

Badescu, V. Tables of Rosseland mean opacities for candidate atmospheres of life hosting free-floating planets. centr.eur.j.phys. 8, 463–479 (2010). https://doi.org/10.2478/s11534-009-0134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0134-5

Keywords

Navigation