Skip to main content

Advertisement

Log in

The prospect of alien life in exotic forms on other worlds

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The nature of life on Earth provides a singular example of carbon-based, water-borne, photosynthesis-driven biology. Within our understanding of chemistry and the physical laws governing the universe, however, lies the possibility that alien life could be based on different chemistries, solvents, and energy sources from the one example provided by Terran biology. In this paper, we review some of these possibilities. Silanes may be used as functional analogs to carbon molecules in environments very different from Earth; solvents other than water may be compatible for life-supporting processes, especially in cold environments, and a variety of energy sources may be utilized, some of which have no Terran analog. We provide a detailed discussion of two possible habitats for alien life which are generally not considered as such: the lower cloud level of the Venusian atmosphere and Titan’s surface environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas O, Schulze-Makuch D (2002) Acetylene-based pathways for prebiotic evolution on Titan. ESA SP 518:345–348

    ADS  Google Scholar 

  • Abe Y, Matsui T (1988) Evolution of an impact-generated H2O–CO2 atmosphere and formation of a hot proto-ocean on Earth. J Atmosph Sci 45:3081–3101

    Article  ADS  Google Scholar 

  • Artemieva N, Lunine JI (2003) Cratering on Titan; impact melt, ejecta, and the fate of surface organics. Icarus 164:471–480

    Article  ADS  CAS  Google Scholar 

  • Aspinall GM, Copsey MC, Ledham AP, Russell CA (2002) Imido analogues of p-block oxoanions. Coord Chem Rev 227:217–232

    Article  CAS  Google Scholar 

  • Bain JD, Diala ES, Glabe CG, Dix TA, Chamberlin AR (1989) Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J Am Chem Soc 111:8013–8014

    Article  CAS  Google Scholar 

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  PubMed  ADS  CAS  Google Scholar 

  • Baker VR, Dohm JM, Fairén AG, Ferré TPA, Ferris JC, Miyamoto H, Schulze-Makuch D (2005) Extraterrestrial hydrology. Hydrogeol J 13:51–68

    Article  ADS  CAS  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. PNAS 102:9306–9310

    Article  PubMed  ADS  CAS  Google Scholar 

  • Benner S (2002) Weird life: chances vs. necessity (alternative biochemistries). Presentation given at “Weird Life” Planning Session for National Research Concil’s Committee on the Origins and Evolution of Life, National Academies of Sciences, USA, http://www.nationalacademies.org/ssb/weirdlife.html

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP, Frankel RB (1981) Magnetic navigation in bacteria. Sci Am 245:42–49

    Article  Google Scholar 

  • Blum HF (1968) Time’s arrow and evolution, 3rd edn. Princeton University Press, New Jersey

    Google Scholar 

  • Bragger JM, Dunn RV, Daniel RM (2000) Enzyme activity down to −100°C. Biochim Biophys Acta 1480:278–282

    PubMed  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Tourova TP, Kuznetsov BB, Lysenko AM, Bykova SA, Gal’chemko VF, Mityushina LL, Osipov GA (2000) Heliobacterium sulfidophilum sp. nov. and Heliobacterium undosum sp. nov.: sulfide oxidizing heliobacteria from thermal sulfidic springs. Microbiology/Mikrobiologiya 69:325–334

    CAS  Google Scholar 

  • Budavari S, O’Neill MJ, Smith A, Heckelman PE, Kinnerary JF (eds) (1996) The Merck index, 12th edn. Merck, Whitehouse Station, NJ

    Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, London

    Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of life: a scientific detective story. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cairns-Smith AG, Hartman H (1986) Clay minerals and the origin of life. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Carrea G, Ottolina G, Riva S (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol 13:63–70

    Article  CAS  Google Scholar 

  • Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234

    Article  ADS  CAS  Google Scholar 

  • Chanover NJ, Anderson CM, McKay CP, Rannou P, Glenar DA, Hillman JJ, Blass WE (2003) Probing Titan’s lower atmosphere with acousto-optic tuning. Icarus 163:150–163

    Article  ADS  CAS  Google Scholar 

  • Cleland CE, Chyba CF (2002) Defining “life”. Orig Life Evol Biosph 32:387–393

    Article  PubMed  ADS  CAS  Google Scholar 

  • Cockell CS (1999) Life on Venus. Planet Space Sci 47:1487–1501

    Article  ADS  CAS  Google Scholar 

  • CRC (2001) In: Lide DR (ed) Handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Croft SK, Lunine JI, Kargel JS (1988) Equation of state of ammonia–water liquid: derivation and planetological applications. Icarus 73:279–293

    Article  ADS  CAS  Google Scholar 

  • Dahn JR, Way BM, Fuller E, Tse JS (1993) Structure of siloxene and layered polysilane (Si6H6). Phys Rev B 48:17872–17877

    Article  ADS  CAS  Google Scholar 

  • Daniel RM, Finney JL, Stoneham M (2004) Introduction (to discussion meeting issue ‘The molecular basis of life: is life possible without water?”). Phil Trans R Soc Lond B 359:1143

    Article  Google Scholar 

  • Davies PCW (1996) The transfer of viable microorganisms between planets. Ciba Foundation Symposium 202 (Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester

    Book  Google Scholar 

  • Dean J (1992) Lange’s handbook of chemistry, 14th edn. McGraw Hill, New York

    Google Scholar 

  • Dimmick RL, Wolochow H, Chatigny MA (1979) Evidence for more than one division of bacteria within airborne particles. Appl Environ Microbiol 38:642–643

    PubMed  CAS  Google Scholar 

  • Donahue TM, Hoffman JH, Hodges RR, Watson AJ (1982) Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216:630–633

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dyson F (1999) Life in the universe: is life digital or analog? Abstract, Scientific Colloquium, 3 December 1999, Goddard Space Flight Center

  • Elachi C, Wall S, Allison M, Anderson Y, Boehmer R, Callahan P, Encrenaz P, Flamini E, Franceschetti G, Gim Y, Hamilton G, Hensley S, Janssen M, Johnson W, Kelleher K, Kirk R, Lopes R, Lorenz R, Lunine J, Muhleman D, Ostro S, Paganelli F, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Soderblom L, Stiles B, Stofan E, Vetrella S, West R, Wood C, Wye L, Zebker H (2005) Cassini radar views the surface of Titan. Science 308:970–974

    Article  PubMed  ADS  CAS  Google Scholar 

  • Feher FJ (2000) Polyhedral oligosilsesquioxanes and heterosilsesquioxanes. In silicon, germanium and tin compounds, metal alkoxides, metal diketons and silicones. Gelest, Tullytown, PA, pp 43–59

    Google Scholar 

  • Fegley B (1987) Carbon chemistry and organic compound synthesis in the solar nebula. Meteorities 22:378

    ADS  Google Scholar 

  • Feinberg G, Shapiro R (1980) Life beyond Earth—the intelligent Earthling’s guide to life in the universe. Morrow, New York

    Google Scholar 

  • Firsoff VA (1963) Life beyond the Earth. Basic Books, New York

    Google Scholar 

  • Fortes AD (2000) Exobiological implications of a possible ammonia–water ocean inside Titan. Icarus 146:444–452

    Article  ADS  CAS  Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fujino M (1987) Photoconductivity in organopolysilanes. Chem Phys Lett 136:451–453

    Article  ADS  CAS  Google Scholar 

  • Fuzzi S (2002) Organic component of aerosols and clouds. EUROTRAC-2 symposium 2002: transformation and chemical transformation in the troposphere. Garmisch-Partenkirchen, Germany

    Google Scholar 

  • Gerdel RW, Drouet F (1960) The cryoconite of the Thule area, Greenland. Trans Am Microsc Soc 79:256–272

    Article  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (1999) The RNA world, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  ADS  Google Scholar 

  • Gislén T (1948) Aerial plankton and its condition of life. Biol Rev 23:109–126

    Article  PubMed  Google Scholar 

  • Gladstone GR, Towe KM, Kasting JF (1993) Photochemistry in the primitive solar nebula; discussions and reply. Science 261: 1058–1060

    Article  PubMed  ADS  CAS  Google Scholar 

  • Goldsmith D, Owen T (2001) The search for life in the universe, 3rd edn. University Science, Sausalito, California

    Google Scholar 

  • Greenwood NN and Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, Great Britain

    Google Scholar 

  • Grinspoon DH (1997) Venus revealed: a new look below the clouds of our mysterious twin planet. Perseus, Cambridge, Massachusetts

    Google Scholar 

  • Gusev VA, Schulze-Makuch D (2004) Genetic code: lucky chance or fundamental law of nature? Phys Life Rev 1:202–229

    Article  ADS  Google Scholar 

  • Gusev VA, Schulze-Makuch D (2005) Low frequency electromagnetic waves as a supplemental energy source to sustain microbial growth. Naturwissenschaften 92:115–120

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hagemann M, Schoor A, Mikkat S, Effmert U, Zuther E, Martin K, Fulda S, Vinnemeier J, Kunert A, Milkowski C, Probst C, Erdmann N (1999) The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC, New York, pp 177–186

    Google Scholar 

  • Haldane JBS (1954) The origin of life. New biology, vol 16. Penguin, Harmondsworth, pp 12–27

    Google Scholar 

  • Hanon P, Chaussidon M, Robert F (1996) The redox state of the solar nebula; C and H concentrations in chondrules. Meteorit Planet Sci 31:Suppl. 57

  • Hapke B, Nelson R (1975) Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry. J Atmosph Sci 32:1212–1218

    Article  ADS  CAS  Google Scholar 

  • Harrison PG (1997) Silicate cages: precursors to new materials. J Organomet Chem 542:141–184

    Article  CAS  Google Scholar 

  • Henderson LJ (1913) The fitness of the environment. Beacon, Boston, Massachusetts

    Google Scholar 

  • Herlihy LJ, Galloway JN, Mills AL (1987) Bacterial utilization of formic and acetic acid in rainwater. Atmos Environ 21:2397–2402

    Article  CAS  Google Scholar 

  • Hohsaka T, Masahiko SM (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809–815

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Rettberg P (2002) A thin meteorite layer protects bacterial spores in space. Proceedings of the 2nd astrobiology science conference, April 7–11, 2002, NASA Ames Research Center, Moffett Field, California, pp 23

  • Ibrahim AI, Swank JH, Parke W (2003) New evidence of proton–cyclotron resonance in a magnetar strength field from SGR 1806-20. Astrophys J Lett 584:L17–L21

    Article  ADS  Google Scholar 

  • Ikushima Y (1997) Supercritical fluids: an interesting medium for chemical and biochemical processes. Adv Colloid Interface Sci 71–72:259–280

    PubMed  Google Scholar 

  • Imshenetsky AA, Lysenko SV, Kazakov GA (1978) Upper boundary to the biosphere. Appl Environ Microbiol 35:1–5

    PubMed  CAS  Google Scholar 

  • Irwin LN, Schulze-Makuch D (2001) Assessing the plausibility of life on other worlds. Astrobiology 1:143–160

    Article  PubMed  ADS  CAS  Google Scholar 

  • Jakosky B (1998) The search for life on other planets. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  PubMed  ADS  CAS  Google Scholar 

  • Koshland DE (2002) The seven pillars of life. Science 295:2215–2216

    Article  PubMed  CAS  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kunde VG, Aikin AC, Hanel RA, Jennings DE, Maguire WC, Samuelson RE (1981) C4H2, HC3N and C2N2 in Titan’s atmosphere. Nature 292:686–688

    Article  ADS  CAS  Google Scholar 

  • Leck C, Tjernström M, Matrai P, Swietlicki E, Bigg K (2004) Can marine micro-organisms influence melting of the Arctic pack ice? EOS Trans Am Geophys Union 85:25, 30, 32

    Article  ADS  Google Scholar 

  • Lickiss PD, Litster SA, Redhouse AD, Wisener CJ (1991) Isolation of a tetrahydroxydisiloxane formed during hydrolysis of an alkyltricholorsilane-crystal and molecular structure of [tert-Bu(OH)2Si]2O. J Chem Soc Chem Commun 3:173–174

    Article  Google Scholar 

  • Lickiss PD, Redhouse AD, Thompson RJ, Stanczyk WA, Rozga K (1993) The crystal structure of (Me2Si)2O. J Organomet Chem 453:13–16

    Article  CAS  Google Scholar 

  • Llorca J (1998) Gas-grain chemistry of carbon in interplanetary dust particles; kinetics and mechanism of hydrocarbon formation. 29th Lunar and Planetary Science Conference, abstract # 1119

  • Lorenz RD (2002) Thermodynamics of geysers: application to Titan. Icarus 156:176–183

    Article  ADS  CAS  Google Scholar 

  • Lorenz RD, Lunine JI, McKay CP (2000) Geologic settings for aqueous organic synthesis on Titan revisited. Enantiomer 6:83–96

    Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–415

    Article  ADS  CAS  Google Scholar 

  • Lunine JI (1994) Does Titan have oceans? Am Sci 82:134–143

    ADS  Google Scholar 

  • Lunine JI, Yung YL, Lorenz RD (1999) On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planet Space Sci 47:1291–1303

    Article  PubMed  ADS  CAS  Google Scholar 

  • Marcano V, Benitez P, Palacios-Pru E (2002) Growth of a lower eukaryote in non-aromatic hydrocarbon media >= C-12 and its exobiological significance. Planet Space Sci 50:693–709

    Article  ADS  CAS  Google Scholar 

  • Maxka J, Huang LM, West R (1991) Synthesis and NMR spectroscopy of permethylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(Me2Si)22. Organometallics 10:656–659

    Article  CAS  Google Scholar 

  • Mee AJ (1934) Physical chemistry. Heinemann, London, UK

    Google Scholar 

  • Merck Research Labs (1996) The Merck index, 12th edn. Whitehousestation, New Jersey

    Google Scholar 

  • Miller PS, McParland KB, Jayaraman K, Tso POP (1981) Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 20:1874–1880

    Article  PubMed  CAS  Google Scholar 

  • Moeller T (1957) Inorganic chemistry, 6th impression. Wiley, New York

    Google Scholar 

  • Molton P (1974) Non-aqueous biosystems: the case for liquid ammonia as a solvent. J Br Interplanet Soc 27:243–262

    ADS  Google Scholar 

  • Monod J (1971) Chance and necessity. Knopf, New York

    Google Scholar 

  • Morowitz H, Sagan C (1967) Life in the clouds of Venus? Nature 215:1259–1260

    Article  ADS  Google Scholar 

  • Muller AWJ (1985) Thermosynthesis by biomembranes: energy gain from cyclic temperature changes. J Ther Biol 115:429–453

    Article  ADS  CAS  Google Scholar 

  • Muller AWJ (1993) A mechanism for thermosynthesis based on a thermotropic phase transition in an asymmetric biomembrane. Physiol Chem Phys Med NMR 25:95–111

    CAS  Google Scholar 

  • Muller AWJ (1995) Were the first organisms heat engines?—a new model for biogenesis and the early evolution of biological energy conversion. Prog Biophys Mol Biol 63:193–231

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (2003) Finding extraterrestrial organisms living on thermosynthesis. Astrobiology 3:555–562

    Article  PubMed  ADS  CAS  Google Scholar 

  • Muller AWJ, Schulze-Makuch D (2005) Thermal energy and the origin of life. Orig Life Evol Biosph (In press)

  • Muller T, Zilche W, Auner N (1998) Recent advances in the chemistry of Si-heteroatom multiple bonds. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2, part 1. Wiley, Chichester, UK, pp 857–1062

    Chapter  Google Scholar 

  • Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188

    Article  PubMed  ADS  CAS  Google Scholar 

  • Pace CN, Treviño S, Prabhakaran E, Scholtz JM (2004) Protein structure, stability and solubility in water and other solvents. Phil Trans R Soc Lond B 359:1225–1235

    Article  CAS  Google Scholar 

  • Pickett-Heaps J, Schmid AAM, Edgar LA (1990) The cell biology of diatom valve formation. In: Round FE, Chapman DJ (eds) Prog Phycol Res 7:1–169

  • Pierson BK, Oesterle A, Murphy K (1987) Pigments, light penetrations, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45:365–376

    Article  CAS  Google Scholar 

  • Plummer WT (1969) Venus clouds: test for hydrocarbons. Science 163:1191–1192

    Article  PubMed  ADS  CAS  Google Scholar 

  • Porco CC, The Cassini Imaging Team (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168

    Article  PubMed  ADS  CAS  Google Scholar 

  • Raulin F (1998) Titan. In: Brack A (ed) The molecular origins of life. Cambridge University Press, New York, pp 365–385

    Google Scholar 

  • Raulin F, Owen T (2002) Organic chemistry and exobiology on Titan. Space Sci Rev 104:379–395

    Article  ADS  Google Scholar 

  • Raulin F, Bruston P, Paillous P, Sternberg R (1995) The low temperature organic chemistry of Titan’s geofluid. Adv Space Res 15:321–333

    Article  PubMed  CAS  Google Scholar 

  • Reddy PM, Bruice TC (2003) Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonecleotide mixed sequences. Biorg Med Chem Lett 13:1281–1285

    Article  CAS  Google Scholar 

  • Rettberg P, Rothschild LJ (2002) Ultraviolet radiation in planetary atmospheres and biological implications. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions for life. Springer, Berlin Heidelberg New York, pp 233–243

    Google Scholar 

  • Roe HG, de Pater I, Macintosh BA, McKay CP (2002) Titan’s clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581:1399–1406

    Article  ADS  Google Scholar 

  • Sagan C (1961) The planet Venus. Science 133:849–858

    Article  PubMed  ADS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R(2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  ADS  Google Scholar 

  • Schleper C, Peuhler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1996) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7079

    Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment, 4th edn. Cambridge University Press, Cambridge, pp 521

    Google Scholar 

  • Schoffstall AM, Liang EM (1985) Phosphorylation mechanisms in chemical evolution. Orig Life Evol Biosph 15:141-150

    Article  ADS  CAS  Google Scholar 

  • Schoffstall AM, Barto RJ, Ramo DL (1982) Nucleoside and deoxynucleoside in formamide solutions. Orig Life Evol Biosph 12:143–151

    Article  CAS  Google Scholar 

  • Schulze-Makuch D (2003) Chemical and microbial composition of subsurface-, surface-, and atmospheric water samples in the southern Sacramento Mountains, New Mexico. Proceedings of the annual spring meeting, New Mexico Geological Society Conference, Socorro, New Mexico, p 62

  • Schulze-Makuch D, Irwin LN (2002a) Energy cycling and hypothetical organisms in Europa’s ocean. Astrobiology 2:105–121

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002b) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2:197–202

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2004) Life in the universe: expectations and constraints. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–567

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schulze-Makuch D, Guan H, Irwin LN, Vega E (2002) Redefining life: an ecological, thermodynamic and bioinformatic approach. In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 169–179

    Google Scholar 

  • Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock M (2004) A sulfur-based UV adaptation strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4:11–18

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schulze-Makuch D, Dohm JM, Fairén AG, Baker VR, Fink W, Strom RG (2005) Venus, Mars, and the ices on Mercury and the Moon: astrobiological implications and proposed mission designs. Astrobiology 5:778–795

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schrödinger E (1944) What is life?: the physical aspect of the living cell. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Segré D, Lancet D (2000) Composing life. EMBO Rep 1:217–222

    Article  PubMed  Google Scholar 

  • Sharma HK, Pannell KH (1995) Activation of the Si–Si bond by transition metal complexes. Chem Rev 95:1351–1374

    Article  CAS  Google Scholar 

  • Sievers D, von Kiedrowski G (1994) Self-replication of complementary nucleotide-based oligomers. Nature 369:221–224

    Article  PubMed  ADS  CAS  Google Scholar 

  • Smith HD, McKay CP (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  ADS  CAS  Google Scholar 

  • Smith GD, Strobel A, Broadfoot B, Sandel D, Shemansky J, Holberg J (1982) Titan’s upper atmosphere: composition and temperature from the EUV solar occultation results. J Geophys Res 87:1351–1360

    Article  ADS  CAS  Google Scholar 

  • Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Shoemaker EM (1990) Subsurface liquid N2 suggested by geyser-like eruptions on Triton. Science 250:410–415

    Article  PubMed  ADS  Google Scholar 

  • Souchez R, Lemmens M, Chappellaz J (1995) Flow-induced mixing in the GRIP basal ice deduced from the CO2 and CH4 records. Geophys Res Lett 22:41–44

    Article  ADS  Google Scholar 

  • Steinbeck C, Richert C (1998) The role of ionic backbones in RNA structure: an unusual stable non-Watson–Crick duplex of a nonionic analog in a apolar medium. J Am Chem Soc 120:11576–11580

    Article  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  PubMed  CAS  Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  PubMed  CAS  Google Scholar 

  • Thompson WR, Sagan C (1992) Organic chemistry on Titan-surface interactions. ESA SP 338:167–176

    ADS  Google Scholar 

  • Tokano T, Neubauer FM, Laube M, McKay CP (2001) Three-dimensional modeling of the tropospheric methane cycle on Titan. Icarus 153:130–147

    Article  ADS  CAS  Google Scholar 

  • Tokito N, Okazaki R (1998) Polysilanes: conformation, chromotropism and conductivity. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon, vol 2, Part 1. Wiley, Chichester, UK, pp 1063–1104

    Chapter  Google Scholar 

  • Tortora G, Funke B, Case C (2001) Microbiology: an introduction, 7th edn. Addison Wesley Longman, San Francisco

    Google Scholar 

  • Unno M, Takasa K, Matsumoto H (2000) Formation of supermolecule by assembling of two different silanols. Chem Lett 3:242–243

    Article  Google Scholar 

  • Varela ME, Metrich N (2000) Carbon in olivines of chondritic meteorites. Geochim Cosmochim Acta 64:3433–3438

    Article  ADS  CAS  Google Scholar 

  • Vethanayagam VR (1991) Purple photosynthetic bacteria from a tropical mangrove environment. Mar Biol 110:161–163

    Article  Google Scholar 

  • Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruit fly and mouse. Nature 423:822–823

    Article  PubMed  ADS  CAS  Google Scholar 

  • Voet D, Voet J (2004) Biochemistry. Wiley, Hoboken, NJ

    Google Scholar 

  • Walsh R (1981) Bond dissociation energy values in silicon-containing compounds and some of their implications. Accounts Chem Res 14:246–252

    Article  ADS  CAS  Google Scholar 

  • West R (2001) Polysilanes: conformation, chromotropism and conductivity. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon, vol 2, part 1. Wiley, Chichester, UK, pp 541–563

    Chapter  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  ADS  Google Scholar 

  • Wilmer P, Stone G, Johnston I (2000) Environmental physiology of animals. Blackwell, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schulze-Makuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze-Makuch, D., Irwin, L.N. The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 93, 155–172 (2006). https://doi.org/10.1007/s00114-005-0078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0078-6

Keywords

Navigation