Skip to main content
Log in

Adatom diffusion on vicinal surfaces with permeable steps

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We study the behavior of single atoms on an infinite vicinal surface assuming certain degree of step permeability. Assuming complete lack of re-evaporation and ruling out nucleation the atoms will inevitably join kink sites at the steps but will do many attempts before that. Increasing the probability for step permeability or the kink spacing lead to increase of the number of steps crossed before incorporation of the atoms into kink sites. The asymmetry of the attachment-detachment kinetics (Ehrlich-Schwoebel effect) suppresses the step permeability and completely eliminates it in the extreme case of the infinite Ehrlich-Schwoebel barrier. A negligibly small drift of the adatoms in a direction perpendicular to the steps leads to a significant asymmetry of the distribution of the permeability events, the atoms thus visiting more distant steps in the direction of the drift. The curves are fitted with an exponential function containing a constant which can be considered as a length scale of the effect of the drift. Some conclusions concerning the stability of the vicinals are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Burton, N. Cabrera, F. C. Frank, Philos. Tr. R. Soc. S.-A 243, 299 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. J. Krug, In: A. Voigt (Ed.), Multiscale Modeling in Epitaxial Growth (Birkhäuser, 2005), 70

  3. J. A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, 2000)

  4. A. Chernov, Modern Crystallography III, Crystal Growth (Springer Verlag, Berlin, 1984)

    Google Scholar 

  5. S. Stoyanov, V. Tonchev, Phys. Rev. B 58, 1590 (1998)

    Article  ADS  Google Scholar 

  6. S. N. Filimonov, Yu. Hervieu, Surf. Sci. 553, 133 (2004)

    Article  ADS  Google Scholar 

  7. B. Voigtländer, T. Weber, Phys. Rev. Lett. 77, 3861 (1996)

    Article  ADS  Google Scholar 

  8. S. Tanaka, N. C. Bartelt, C. C. Umbach, R. M. Tromp, J. M. Blakely, Phys. Rev. Lett. 78, 3342 (1997)

    Article  ADS  Google Scholar 

  9. F. Buatier de Mongeot et al., Phys. Rev. Lett. 91, 016102 (2003)

    Article  ADS  Google Scholar 

  10. D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987)

    Article  ADS  Google Scholar 

  11. B. S. Swartzentruber, Y. W. Mo, R. Kariotis, M. G. Lagally, M. B. Webb, Phys. Rev. Lett. 65, 1913 (1990)

    Article  ADS  Google Scholar 

  12. O. L. Alerhand, D. Vanderbilt, R. D. Meade, J. D. Joannopoulos, Phys. Rev. Lett. 61, 1973 (1988)

    Article  ADS  Google Scholar 

  13. M. Sato, M. Uwaha, Y. Sato, Phys. Rev. B 62, 8452 (2000)

    Article  ADS  Google Scholar 

  14. M. Sato, Eur. J. Phys. B 59, 311 (2007)

    Article  ADS  Google Scholar 

  15. O. Pierre-Louis, Phys. Rev. E 68, 021604 (2003)

    Article  ADS  Google Scholar 

  16. O. Pierre-Louis, C. R. Phys. 6, 11 (2005)

    Article  ADS  Google Scholar 

  17. W. F. Chung, K. Bromann, M. S. Altman, Int. J. Mod. Phys. B 16, 4353 (2002)

    Article  ADS  Google Scholar 

  18. B. Ranguelov, M. S. Altman, I. Markov, Phys. Rev. B 75, 245419 (2007)

    Article  ADS  Google Scholar 

  19. I. Markov, Phys. Rev. B 56, 12544 (1997)

    Article  ADS  Google Scholar 

  20. J. Villain, J. Cryst. Growth 275, e2307 (2005)

    Article  ADS  Google Scholar 

  21. S. N. Filimonov, Yu. Hervieu, Phys. Low-Dimens. Str. 7/8, 15 (2002)

    Google Scholar 

  22. S. N. Filimonov, Yu. Hervieu, Surf. Sci. 507-510, 270 (2002)

    Article  ADS  Google Scholar 

  23. G. Ehrlich, F. G. Hudda, J. Chem. Phys. 44, 1039 (1966)

    Article  ADS  Google Scholar 

  24. R. L. Schwoebel, E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966)

    Article  ADS  Google Scholar 

  25. S. Stoyanov, Jpn. J. Appl. Phys. 30, 1 (1991)

    Article  ADS  Google Scholar 

  26. V. V. Voronkov, Sov. Phys. Crystallogr. 15, 13 (1970)

    Google Scholar 

  27. I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal growth and Epitaxy, 2nd edition (World Scientific, 2003)

  28. B. Voigtländer, A. Zinner, Surf. Sci. 292, L775 (1993)

    Article  Google Scholar 

  29. J. Tersoff, A. W. Denier van der Gon, R. M. Tromp, Phys. Rev. Lett. 72, 266 (1994)

    Article  ADS  Google Scholar 

  30. M. Villarba, H. Jónsson, Surf. Sci. 317, 15 (1994)

    Article  ADS  Google Scholar 

  31. F. Leroy, P. Müller, J. J. Metois, O. Pierre-Louis, Phys. Rev. B 76, 045402 (2007)

    Article  ADS  Google Scholar 

  32. A. Latyshev, A. Aseev, A. Krasilnikov, S. Stenin, Surf. Sci. 213, 157 (1989)

    Article  ADS  Google Scholar 

  33. K. Fujita, M. Ichikawa, S. Stoyanov, Phys. Rev. B 60, 16006 (1999)

    Article  ADS  Google Scholar 

  34. M. Ozdemir, A. Zangwill, Phys. Rev. B 45, 3718 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan S. Ranguelov.

About this article

Cite this article

Ranguelov, B.S., Markov, I.V. Adatom diffusion on vicinal surfaces with permeable steps. centr.eur.j.phys. 7, 350–355 (2009). https://doi.org/10.2478/s11534-009-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0048-2

Keywords

PACS (2008)

Navigation