Skip to main content
Log in

Finite-element simulation of ultrasound brain surgery: effects of frequency, focal pressure, and scanning path in bone-heating reduction

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this paper, the finite-element method (FEM) simulation of ultrasound brain surgery is presented. The overheating problem of the post-target bone, which is one of the limiting factors for a successful ultrasound brain surgery, is considered. In order to decrease bone heating, precise choices of frequency, focal pressure, and scanning path are needed. The effect of variations in the mentioned scanning parameters is studied by means of the FEM. The resulting pressure and temperature distributions of a transdural ultrasound brain surgery are simulated by employing the FEM for solving the Helmholtz and bioheat equations in the context of a two-dimensional MRI-based brain model. Our results show that for a suitable value of the frequency, an increase in focal pressure leads to a decrease in the required duration of the treatment and is associated with less heating of the surrounding normal tissue. In addition, it is shown that at a threshold focal pressure, the target temperature reaches toxic levels whereas the temperature rise in the bone is minimal. Wave reflections from sinus cavities, which result in constructive interference with the incoming waves, are one of the reasons for overheating of the bone and can be avoided by choosing a suitable scanning path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hynynen, F.A. Jolesz, Ultrasound. Med. Biol. 24, 275 (1998)

    Article  Google Scholar 

  2. B. Stea et al., Int. J. Radiat. Oncol. 19, 1463 (1990)

    Article  Google Scholar 

  3. P.K. Sneed, B. Stea, Thermoradiotherapy for brain tumors, In: M.H. Seegenchmiedet, P. Fessenden, C.C. Vernon, (Eds.), Thermoradiotherapy and Thermotherapy (Springer-Verlag, Heidelberg, Berlin 1996)

    Google Scholar 

  4. P.K. Sneed et al., Neurosyrgery. 28, 206 (1991)

    Article  Google Scholar 

  5. S. Vaezy, M. Andrew, P. Kaczkowski, L. Crum, Annu. Rev. Biomed. Eng. 3, 375 (2001)

    Article  Google Scholar 

  6. G.T. Clement, Ultrasonics 42, 1087 (2004)

    Article  Google Scholar 

  7. C.J. Diederich, K. Hynynen, Ultrasound. Med. Biol. 25, 871 (1999)

    Article  Google Scholar 

  8. K. Hynynen, In: S.C. Schneider, M. Levy, B.R. McAvoy (Eds.), IEEE Ultrasonics Symposium, 5–8 Oct. 1997, Toronto, Canada (IEEE, New York 1997) 1305

    Google Scholar 

  9. J.G. Lynn, R.L. Zwemer, A.J. Chick, A.E. Miller, J. Gen. Physiol. 26, 179 (1942)

    Article  Google Scholar 

  10. J.G. Lynn, T.J. Putnam, Am. J. Path. 20, 637 (1944)

    Google Scholar 

  11. P.D. Wall, W.J. Fry, R. Stephens, D. Tucker, J.Y. Lettvin, Science 114, 686 (1951)

    Article  ADS  Google Scholar 

  12. W.J. Fry, W. Mosberg, J.W. Barnard, F.J. Fry, J. Neurosurg. 11, 471 (1954)

    Article  Google Scholar 

  13. W.J. Fry, J.W. Barnard, F.J. Fry, R.F. Krumins, J.F. Brennan, Science 122, 517 (1955)

    Article  ADS  Google Scholar 

  14. W.J. Fry, F.J. Fry, IRE. Trans. Med. Electron ME-7, 166 (1960)

    Google Scholar 

  15. R.F. Heimburger, Indiana Med. 78, 469 (1985)

    Google Scholar 

  16. A.N. Guthkelch et al., J. Neurooncol. 10, 272 (1991)

    Article  Google Scholar 

  17. N. McDannold et al., Magn. Reson. Med. 49, 1188 (2003)

    Article  Google Scholar 

  18. Z. Ram et al., Neurosurgery 59, 949 (2006)

    Google Scholar 

  19. J.W. Park, S. Jung, T.Y. Junt, M.C. Lee, AIP Conf. Proc. 829, 238 (2006)

    Article  ADS  Google Scholar 

  20. R.Z. Cohen et al., Neurosurgery. 60, 593 (2007)

    Article  Google Scholar 

  21. J. Sun, K. Hynynen, J. Acoust. Soc. Am. 104, 1705 (1998)

    Article  ADS  Google Scholar 

  22. G. Clement, J. Sun, T. Giesecke, K. Hynynen, Phys. Med. Biol. 45, 3707 (2000)

    Article  Google Scholar 

  23. K. Hynynen et al., Eur. J. Radiolo. 59, 149 (2006)

    Article  Google Scholar 

  24. W.L. Lin, C.T. Liauh, J.Y. Yen, Y.Y Chen, M.J. Shieh, Int. J. Radiat. Oncol. 46, 239 (2000)

    Article  Google Scholar 

  25. P.M. Meany, R.L. Clarke, G. Ter Haar, I. Rivens, Ultrasound. Med. Biol. 24, 1489 (1998)

    Article  Google Scholar 

  26. A.D. Pierce (Ed.), Acoustics: An Introduction to its Physical Principles and Applications (Acoustical Society of America, New York, 1994)

    Google Scholar 

  27. A. Bhatia (Ed.), Ultrasound absorption: an introduction to the theory of sound absorption and dispersion in gases, liquids and solids (Dover Publications, New York, 1967)

    Google Scholar 

  28. H.H Pennes, J. App. Physiol. 1, 93 (1948)

    ADS  Google Scholar 

  29. F. Ihlenburg (Ed.), Finite Element Analysis of Acoustic Scattering (Springer, New York, 1998)

    MATH  Google Scholar 

  30. K. Hynynen, Ultrasound. Med. Biol. 17, 157 (1991)

    Article  Google Scholar 

  31. S.A. Goss, R.L. Johnson, F. Dunn, J. Acoust. Soc. Am. 64, 423 (1978)

    Article  ADS  Google Scholar 

  32. S.A. Goss, R.L. Johnson, F. Dunn, J. Acoust. Soc. Am. 68, 93 (1980)

    Article  ADS  Google Scholar 

  33. E.G. Moros, R.B. Roemer, K. Hynynen, Int. J. Hyperther. 6, 351 (1990)

    Article  Google Scholar 

  34. F.J. Fry, J.E. Barger, J. Acoust. Soc. Am. 63, 1576 (1978)

    Article  ADS  Google Scholar 

  35. F. Duck (Ed.), Physical properties of tissue: a Comperhensive handbook (Publisher, Lodon, 1990)

    Google Scholar 

  36. F.P. Incorpera, D. P. Dewitt (Ed.), Fundamentals of heat and mass transfer (John Wiley and Sons, New York, 2001)

    Google Scholar 

  37. J.C. Chato (Ed.), Fundamentals of bioheat transfer. In thermal dosimetry and treatment planning (Springer-Verlag, New York, 1990)

  38. C.J. Henschel, J. Dent. Res. 22, 323 (1943)

    Google Scholar 

  39. T.E. Cooper, G.J. Trezek, J. Heat Transfer. 94, 133 (1972)

    Google Scholar 

  40. J.E. Kennedy, G. Ter Haar, D. Cranston, Br. J. Radiol. 76, 590 (2003)

    Article  Google Scholar 

  41. K. Hynynen et al., Int. J. Hyperther. 6, 891 (1990)

    Article  Google Scholar 

  42. S. Behnia, F. Ghalichi, A. Bonabi, A. Jafari, Jpn. J. Appl. Phys. 45, 1856 (2006)

    Article  Google Scholar 

  43. J.M. Huttunen, T. Huttunen, M. Malinen, J.P. Kaipio, Phys. Med. Biol. 51, 1011 (2006)

    Article  Google Scholar 

  44. E. Moros, R.B. Roemer, K. Hynynen, IEEE. T. Ultrason. Ferr. 35, 552 (1988)

    Article  Google Scholar 

  45. K. Hynynen, De. Young, D. Kundrat, E. Moros, Int. J. Hyperther. 5, 485 (1989)

    Article  Google Scholar 

  46. B.E. Billard, K. Hynynen, R.B. Roemer, Ultrasound. Med. Biol. 16, 409 (1990)

    Article  Google Scholar 

  47. M.C. Kolios, M.D. Sherar, J. W. Hunt, Med. Phys. 23, 1287 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Behnia.

About this article

Cite this article

Behnia, S., Jafari, A., Ghalichi, F. et al. Finite-element simulation of ultrasound brain surgery: effects of frequency, focal pressure, and scanning path in bone-heating reduction. centr.eur.j.phys. 6, 211–222 (2008). https://doi.org/10.2478/s11534-008-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-008-0015-3

PACS (2008)

Keywords

Navigation