Skip to main content

A 2D-FEM Model of Nonlinear Ultrasound Propagation in Trans-cranial MRgFUS Technique

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II (CMBBE 2021)

Abstract

Magnetic Resonance guided Focused Ultrasound (MRgFUS) is a non-invasive technique based on the thermal ablation of a target using high intensity focused ultrasound. MRgFUS treatment applied to brain is challenging due to the skull presence that attenuates ultrasound, leading to heating effects in bone region. In this study, we simulate trans-cranial nonlinear ultrasound propagation considering the detailed structure of bone tissue. We developed a 2D Finite Element (FE) model that mimics the propagation of focused ultrasound through skin, skull and brain tissue. The skull is represented as a three-layered system with two cortical tables packing a layer of trabecular bone. We assume that the space between the concave transducer and tissue is filled by water. Nonlinear ultrasound propagation is determined through Westervelt equation. To control reflection, absorbing layers have been implemented on the boundaries of the domains. The solution of the pressure equation is subsequently coupled with Pennes bioheat equation to determine the temperature distribution in the tissue region. The acoustic pressure, acoustic intensity and temperature distribution are achieved from FE simulation. Highest values of acoustic pressure occur in the focal area and in the bone tissue region. Ablative temperatures, i.e. superior to 55 °C, are achieved in the target zone and at the cortical-trabecular interface. The thermal response in the focal region is in agreement with available literature and allows to validate the model effectiveness. The FE model offers new insights to predict secondary heating effects of ultrasound propagation in the skull region and to improve treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gagliardo, C., et al.: Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur. Radiol. 30(9), 5059–5070 (2020). https://doi.org/10.1007/s00330-020-06712-0

    Article  Google Scholar 

  2. Pozzi, S., Borrazzo, C., Carnì, M., Di Castro, E., Valentini, S., Caccia, B.: A computational tool for evaluating HIFU safety. Ann. Ist. Super Sanita. 52(2), 256–260 (2016). https://doi.org/10.4415/ANN_16_02_18

    Article  Google Scholar 

  3. Lopresto, V., Argentieri, A., Pinto, R., Cavagnaro, M.: Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Phys. Med. Biol. 64(10), 105016 (2019). https://doi.org/10.1088/1361-6560/ab1663

    Article  Google Scholar 

  4. Gagliardo, C., et al.: Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: a technical note. Neuroradiol J. 32(2), 132–138 (2019). https://doi.org/10.1177/1971400918818743

  5. Trimboli, P., Bini, F., Marinozzi, F., Baek, J.H., Giovanella, L.: High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules without anesthesia or sedation. Endocrine 61(2), 210–215 (2018). https://doi.org/10.1007/s12020-018-1560-1

    Article  Google Scholar 

  6. Gupta, P., Srivastava, A.: Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound. Int. J. Hyperthermia. 35(1), 419–434 (2018). https://doi.org/10.1080/02656736.2018.1506166

    Article  Google Scholar 

  7. Pinton, G., Aubry, J.F., Fink, M., Tanter, M.: Effects of nonlinear ultrasound propagation on high intensity brain therapy. Med. Phys. 38(3), 1207–1216 (2011). https://doi.org/10.1118/1.3531553

    Article  Google Scholar 

  8. Leung, S.A., Webb, T.D., Bitton, R.R., Ghanouni, P., Butts Pauly, K.: A rapid beam simulation framework for transcranial focused ultrasound. Sci. Rep. 9(1), 7965 (2019). https://doi.org/10.1038/s41598-019-43775-6

    Article  Google Scholar 

  9. Iacopino, D.G., et al.: Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg Focus. 44(2), E7 (2018). https://doi.org/10.3171/2017.11.FOCUS17614

  10. Bini, F., Pica, A., Novelli, S., Marinozzi, A., Marinozzi, F.: 3D-FEM Modeling of iso-concentration maps in single trabecula from human femur head. In: Tavares, J., Natal Jorge, R. (eds.) VipIMAGE 2019. VipIMAGE 2019, Lecture Notes in Computational Vision and Biomechanics, vol. 34, pp. 509–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32040-9_52

  11. Bini, F., et al.: 3D FEM model to simulate Brownian motion inside trabecular tissue from human femoral head. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. (2021). https://doi.org/10.1080/21681163.2021.1956370

  12. Bini, F., Pica, A., Marinozzi, A., Marinozzi, F.: Prediction of stress and strain patterns from load rearrangement in human osteoarthritic femur head: finite element study with the integration of muscular forces and friction contact. In: Tavares, J., Fernandes, P. (eds.) New Developments on Computational Methods and Imaging in Biomechanics and Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol. 33, pp 49–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23073-9_4

  13. Araneo, R., Bini, F., Rinaldi, A., Notargiacomo, A., Pea, M., Celozzi, S.: Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 26(26), 265402 (2015). https://doi.org/10.1088/0957-4484/26/26/265402

    Article  Google Scholar 

  14. Kyriakou, A., Neufeld, E., Werner, B., Székely, G., Kuster, N.: Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study. J. Ther. Ultrasound. 3, 11 (2015). https://doi.org/10.1186/s40349-015-0032-9

    Article  Google Scholar 

  15. Mueller, J.K., Ai, L., Bansal, P., Legon, W.: Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J. Neural Eng. 14(6), 066012 (2017). https://doi.org/10.1088/1741-2552/aa843e

    Article  Google Scholar 

  16. Rosnitskiy, P.B., Yuldashev, P.V., Sapozhnikov, O.A., Gavrilov, L.R., Khokhlova, V.A.: Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction. J. Acoust. Soc. Am. 146(3), 1786 (2019). https://doi.org/10.1121/1.5126685

    Article  Google Scholar 

  17. Samoudi, M.A., Van Renterghem, T., Botteldooren, D.: Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation. J. Neural Eng. 16(2), 026015 (2019). https://doi.org/10.1088/1741-2552/aafa38

    Article  Google Scholar 

  18. Zhang, H., et al.: The effects of the structural and acoustic parameters of the skull model on transcranial focused ultrasound. Sensors (Basel). 21(17), 5962 (2021). https://doi.org/10.3390/s21175962

    Article  Google Scholar 

  19. Duck, F.A.: Physical Properties of Tissue. A Comprehensive Reference Book. Academic Press, London, UK (1990). https://doi.org/10.1016/C2009-0-02755-X

  20. Huang, J., Holt, R.G., Cleveland, R.O., Roy, R.A.: Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J. Acoust. Soc. Am. 116, 2451–2458 (2004). https://doi.org/10.1121/1.1787124

    Article  Google Scholar 

  21. Haddadi, S., Ahmadian, M.T.: Numerical and experimental evaluation of high-intensity focused ultrasound-induced lesions in liver tissue ex vivo. J Ultrasound Med. 37, 1481–1491 (2018). https://doi.org/10.1002/jum.14491

    Article  Google Scholar 

  22. McDannold, N., et al.: Blood-brain barrier disruption and delivery of irinotecan in a rat model using a clinical transcranial MRI-guided focused ultrasound system. Sci. Rep. 10, 8766 (2020). https://doi.org/10.1038/s41598-020-65617-6

    Article  Google Scholar 

  23. Albin, N., Bruno, O.P., Cheung, T.Y., Cleveland, R.O.: Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams. J. Acoust. Soc. Am. 132(4), 2371–2387 (2012). https://doi.org/10.1121/1.4742722

    Article  Google Scholar 

  24. Fry, F.J., Barger, J.E.: Acoustical properties of the human skull. J. Acoust. Soc. Am. 63(5), 1576–1590 (1978). https://doi.org/10.1121/1.381852

    Article  Google Scholar 

  25. Westervelt, P.J.: Parametric acoustic array. J. Acoust. Soc. Am. 35(4), 535–537 (1963). https://doi.org/10.1121/1.1918525

    Article  Google Scholar 

  26. Pierce, A.D.: Acoustics: An Introduction to its Physical Principles and Applications. 3rd edn. Springer, Cham. Springer Nature Switzerland AG vol. 2019 (2019). https://doi.org/10.1007/978-3-030-11214-1

  27. Jin, J.M.: Theory and Computation of Electromagnetic Fields. John Wiley, Hoboken (2010). https://doi.org/10.1002/9780470874257

  28. Pennes, H.H.: Analysis of tissue and arterial blood temperature in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948). https://doi.org/10.1152/jappl.1948.1.2.93

    Article  Google Scholar 

  29. Gnanaskandan, A., Hsiao, C.T., Chahine, G.: Modeling of microbubble-enhanced high-intensity focused ultrasound. Ultrasound Med. Biol. 45(7), 1743–1761 (2019). https://doi.org/10.1016/j.ultrasmedbio.2019.02.022

    Article  Google Scholar 

  30. Quadri, S.A., et al.: High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg. Focus. 44(2), E16 (2018). https://doi.org/10.3171/2017.11.FOCUS17610

    Article  Google Scholar 

  31. Venard, J.K., Street R.L: Elementary Fluid Mechanics, 5th ed., Wiley, New York (1975)

    Google Scholar 

  32. Chavez, M., Sosa, V.: Speed of sound in saturated pure water. J. Acoust. Soc. Am. 77, 420 (1985). https://doi.org/10.1121/1.391861

    Article  Google Scholar 

  33. Lauterborn, W., Kurz, T., Akhatov, I.: Nonlinear Acoustics in Fluids. In: Rossing T. (eds.) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York (2007). https://doi.org/10.1007/978-0-387-30425-0_8

  34. Mcintosh, R.L., Anderson, V.: A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 5, 129–151 (2010). https://doi.org/10.1142/S1793048010001184

    Article  Google Scholar 

  35. Mast, T.D.: Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 1, 37–42 (2000). https://doi.org/10.1121/1.1336896

    Article  Google Scholar 

  36. Van Leeuwen, G.M., Lagendijk, J.J., Van Leersum, B.J., Zwamborn, A.P., Hornsleth, S.N., Kotte, A.N.: Calculation of change in brain temperatures due to exposure to a mobile phone. Phys. Med. Biol. 44(10), 2367–2379 (1999). https://doi.org/10.1088/0031-9155/44/10/301

    Article  Google Scholar 

  37. Hasgall, P.A. et al.: IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0, 15 May 2018. https://doi.org/10.13099/VIP21000-04-0

  38. Connor, C.W., Clement, G.T., Hynynen, K.: A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Phys. Med. Biol. 47(22), 3925–3944 (2002). https://doi.org/10.1088/0031-9155/47/22/302

    Article  Google Scholar 

  39. Renaud, G., Calle, S., Remenieras, J.P., Defontaine, M.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55(7), 1497–1507 (2008). https://doi.org/10.1109/TUFFC.2008.825

    Article  Google Scholar 

  40. Clarke, A.J., Evans, J.A., Truscott, J.G., Milner, R., Smith, M.A.: A phantom for quantitative ultrasound of trabecular bone. Phys. Med. Biol. 39(10), 1677–1687 (1994). https://doi.org/10.1088/0031-9155/39/10/011

    Article  Google Scholar 

  41. Petkus, V., Ragauskas, A., Jurkonis, R.: Investigation of intracranial media ultrasonic monitoring model. Ultrasonics 40(1–8), 829–833 (2002). https://doi.org/10.1016/s0041-624x(02)00216-0

    Article  Google Scholar 

  42. Voie, A., Fisher, D., Ahadi, G., Holscher, T.: Transcranial measurements of the acoustic field produced by a low frequency focused ultrasound system. AIP Conf. Proc. 1503, 256 (2012). https://doi.org/10.1063/1.4769954

    Article  Google Scholar 

  43. McDannold, N., White, P.J., Cosgrove, R.: Elementwise approach for simulating transcranial MRI-guided focused ultrasound thermal ablation. Phys Rev Res. 1(3), 033205 (2019). https://doi.org/10.1103/physrevresearch.1.033205

    Article  Google Scholar 

Download references

Acknowledgements

. The authors wish to acknowledge eng. Andrea Bergomi and eng. Arianna Ruffo for their contribution during the development of the preliminary study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Bini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bini, F., Pica, A., Marrale, M., Gagliardo, C., Marinozzi, F. (2023). A 2D-FEM Model of Nonlinear Ultrasound Propagation in Trans-cranial MRgFUS Technique. In: Tavares, J.M.R.S., Bourauel, C., Geris, L., Vander Slote, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II. CMBBE 2021. Lecture Notes in Computational Vision and Biomechanics, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-10015-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10015-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10014-7

  • Online ISBN: 978-3-031-10015-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics